mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-03-03 13:28:40 +00:00
checks passed
This commit is contained in:
parent
48ca80fb21
commit
cc5911a3ad
@ -1,4 +1,5 @@
|
||||
from math import *
|
||||
import numpy as np
|
||||
from sympy import lambdify, symbols, sympify
|
||||
|
||||
|
||||
def get_inputs():
|
||||
@ -6,7 +7,8 @@ def get_inputs():
|
||||
Get user input for the function, lower limit, and upper limit.
|
||||
|
||||
Returns:
|
||||
tuple: A tuple containing the function as a string, the lower limit (a), and the upper limit (b) as floats.
|
||||
tuple: A tuple containing the function as a string, the lower limit (a),
|
||||
and the upper limit (b) as floats.
|
||||
|
||||
Example:
|
||||
>>> from unittest.mock import patch
|
||||
@ -21,6 +23,24 @@ def get_inputs():
|
||||
return func, a, b
|
||||
|
||||
|
||||
def safe_function_eval(func_str):
|
||||
"""
|
||||
Safely evaluates the function by substituting x value using sympy.
|
||||
|
||||
Args:
|
||||
func_str (str): Function expression as a string.
|
||||
|
||||
Returns:
|
||||
float: The evaluated function result.
|
||||
"""
|
||||
x = symbols('x')
|
||||
func_expr = sympify(func_str)
|
||||
|
||||
# Convert the function to a callable lambda function
|
||||
lambda_func = lambdify(x, func_expr, modules=["numpy"])
|
||||
return lambda_func
|
||||
|
||||
|
||||
def compute_table(func, a, b, acc):
|
||||
"""
|
||||
Compute the table of function values based on the limits and accuracy.
|
||||
@ -35,14 +55,19 @@ def compute_table(func, a, b, acc):
|
||||
tuple: A tuple containing the table of values and the step size (h).
|
||||
|
||||
Example:
|
||||
>>> compute_table('1/(1+x**2)', 1, -1, 1)
|
||||
([0.5, 0.4235294117647058, 0.36, 0.3076923076923077, 0.26470588235294124, 0.22929936305732482, 0.2], -0.3333333333333333)
|
||||
>>> compute_table(
|
||||
... safe_function_eval('1/(1+x**2)'), 1, -1, 1
|
||||
... )
|
||||
(array([0.5 , 0.69230769, 0.9 , 1. , 0.9 ,
|
||||
0.69230769, 0.5 ]), -0.3333333333333333)
|
||||
"""
|
||||
h = (b - a) / (acc * 6)
|
||||
table = [0 for _ in range(acc * 6 + 1)]
|
||||
for j in range(acc * 6 + 1):
|
||||
x = a + j / (acc * 6)
|
||||
table[j] = eval(func)
|
||||
# Weddle's rule requires number of intervals as a multiple of 6 for accuracy
|
||||
n_points = acc * 6 + 1
|
||||
h = (b - a) / (n_points - 1)
|
||||
x_vals = np.linspace(a, b, n_points)
|
||||
|
||||
# Evaluate function values at all points
|
||||
table = func(x_vals)
|
||||
return table, h
|
||||
|
||||
|
||||
@ -86,7 +111,8 @@ def compute_solution(add, table, h):
|
||||
float: The final computed integral solution.
|
||||
|
||||
Example:
|
||||
>>> compute_solution([4.33, 6.0, 0.0, -4.33], [0.0, 0.866, 1.0, 0.866, 0.0, -0.866, -1.0], 0.5235983333333333)
|
||||
>>> compute_solution([4.33, 6.0, 0.0, -4.33], [0.0, 0.866, 1.0, 0.866, 0.0,
|
||||
... -0.866, -1.0], 0.5235983333333333)
|
||||
0.7853975
|
||||
"""
|
||||
return 0.3 * h * (sum(add) + table[0] + table[-1])
|
||||
@ -94,17 +120,16 @@ def compute_solution(add, table, h):
|
||||
|
||||
if __name__ == "__main__":
|
||||
from doctest import testmod
|
||||
|
||||
testmod()
|
||||
|
||||
|
||||
func, a, b = get_inputs()
|
||||
acc = 1
|
||||
solution = None
|
||||
|
||||
while acc <= 100000:
|
||||
while acc <= 100_000:
|
||||
table, h = compute_table(func, a, b, acc)
|
||||
add = apply_weights(table)
|
||||
solution = compute_solution(add, table, h)
|
||||
acc *= 10
|
||||
|
||||
print(f"Solution: {solution}")
|
||||
print(f'Solution: {solution}')
|
Loading…
x
Reference in New Issue
Block a user