mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-03-15 02:59:50 +00:00
Final Update of DBSCAN
This commit is contained in:
parent
59f4a0e046
commit
cd539e378d
190
machine_learning/dbscan.py
Normal file
190
machine_learning/dbscan.py
Normal file
@ -0,0 +1,190 @@
|
||||
'''
|
||||
|
||||
Author : Gowtham Kamalasekar
|
||||
LinkedIn : https://www.linkedin.com/in/gowtham-kamalasekar/
|
||||
|
||||
'''
|
||||
import math
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import pandas as pd
|
||||
from typing import dict, list
|
||||
|
||||
class DbScan:
|
||||
|
||||
'''
|
||||
DBSCAN Algorithm :
|
||||
Density-Based Spatial Clustering Of Applications With Noise
|
||||
Refer this website for more details : https://en.wikipedia.org/wiki/DBSCAN
|
||||
|
||||
Functions:
|
||||
----------
|
||||
__init__() : Constructor that sets minPts, radius and file
|
||||
perform_dbscan() : Invoked by constructor and calculates the core
|
||||
and noise points and returns a dictionary.
|
||||
print_dbscan() : Prints the core and noise points along
|
||||
with stating if the noise are border points or not.
|
||||
plot_dbscan() : Plots the points to show the core and noise point.
|
||||
|
||||
To create a object
|
||||
------------------
|
||||
import dbscan
|
||||
obj = dbscan.DbScan(minpts, radius, file)
|
||||
obj.print_dbscan()
|
||||
obj.plot_dbscan()
|
||||
'''
|
||||
def __init__(self, minpts : int, radius : int, file : str =
|
||||
({'x': 3, 'y': 7}, {'x': 4, 'y': 6}, {'x': 5, 'y': 5},
|
||||
{'x': 6, 'y': 4},{'x': 7, 'y': 3}, {'x': 6, 'y': 2},
|
||||
{'x': 7, 'y': 2}, {'x': 8, 'y': 4},{'x': 3, 'y': 3},
|
||||
{'x': 2, 'y': 6}, {'x': 3, 'y': 5}, {'x': 2, 'y': 4})
|
||||
) -> None:
|
||||
'''
|
||||
Constructor
|
||||
|
||||
Args:
|
||||
-----------
|
||||
minpts (int) : Minimum number of points needed to be
|
||||
within the radius to considered as core
|
||||
radius (int) : The radius from a given core point where
|
||||
other core points can be considered as core
|
||||
file (csv) : CSV file location. Should contain x and y
|
||||
coordinate value for each point.
|
||||
|
||||
Example :
|
||||
minPts = 4
|
||||
radius = 1.9
|
||||
file = 'data_dbscan.csv'
|
||||
|
||||
File Structure of CSV Data:
|
||||
---------------------------
|
||||
_____
|
||||
x | y
|
||||
-----
|
||||
3 | 7
|
||||
4 | 6
|
||||
5 | 5
|
||||
6 | 4
|
||||
7 | 3
|
||||
-----
|
||||
'''
|
||||
self.minpts = minpts
|
||||
self.radius = radius
|
||||
self.file = file
|
||||
self.dict1 = self.perform_dbscan()
|
||||
def perform_dbscan(self) -> dict[int, list[int]]:
|
||||
'''
|
||||
Args:
|
||||
-----------
|
||||
None
|
||||
|
||||
Return:
|
||||
--------
|
||||
Dictionary with points and the list
|
||||
of points that lie in its radius
|
||||
|
||||
>>> result = DbScan(4, 1.9).perform_dbscan()
|
||||
>>> for key in sorted(result):
|
||||
... print(key, sorted(result[key]))
|
||||
1 [1, 2, 10]
|
||||
2 [1, 2, 3, 11]
|
||||
3 [2, 3, 4]
|
||||
4 [3, 4, 5]
|
||||
5 [4, 5, 6, 7, 8]
|
||||
6 [5, 6, 7]
|
||||
7 [5, 6, 7]
|
||||
8 [5, 8]
|
||||
9 [9, 12]
|
||||
10 [1, 10, 11]
|
||||
11 [2, 10, 11, 12]
|
||||
12 [9, 11, 12]
|
||||
|
||||
'''
|
||||
if type(self.file) is str:
|
||||
data = pd.read_csv(self.file)
|
||||
else:
|
||||
data = pd.DataFrame(list(self.file))
|
||||
e = self.radius
|
||||
dict1 = {}
|
||||
for i in range(len(data)):
|
||||
for j in range(len(data)):
|
||||
dist = math.sqrt(pow(data['x'][j] - data['x'][i],2)
|
||||
+ pow(data['y'][j] - data['y'][i],2))
|
||||
if dist < e:
|
||||
if i+1 in dict1:
|
||||
dict1[i+1].append(j+1)
|
||||
else:
|
||||
dict1[i+1] = [j+1,]
|
||||
return dict1
|
||||
def print_dbscan(self) -> None:
|
||||
'''
|
||||
Outputs:
|
||||
--------
|
||||
Prints each point and if it is a core or a noise (w/ border)
|
||||
|
||||
>>> DbScan(4,1.9).print_dbscan()
|
||||
1 [1, 2, 10] ---> Noise ---> Border
|
||||
2 [1, 2, 3, 11] ---> Core
|
||||
3 [2, 3, 4] ---> Noise ---> Border
|
||||
4 [3, 4, 5] ---> Noise ---> Border
|
||||
5 [4, 5, 6, 7, 8] ---> Core
|
||||
6 [5, 6, 7] ---> Noise ---> Border
|
||||
7 [5, 6, 7] ---> Noise ---> Border
|
||||
8 [5, 8] ---> Noise ---> Border
|
||||
9 [9, 12] ---> Noise
|
||||
10 [1, 10, 11] ---> Noise ---> Border
|
||||
11 [2, 10, 11, 12] ---> Core
|
||||
12 [9, 11, 12] ---> Noise ---> Border
|
||||
'''
|
||||
for i in self.dict1:
|
||||
print(i," ",self.dict1[i], end=' ---> ')
|
||||
if len(self.dict1[i]) >= self.minpts:
|
||||
print("Core")
|
||||
else:
|
||||
for j in self.dict1:
|
||||
if (
|
||||
i != j
|
||||
and len(self.dict1[j]) >= self.minpts
|
||||
and i in self.dict1[j]
|
||||
):
|
||||
print("Noise ---> Border")
|
||||
break
|
||||
else:
|
||||
print("Noise")
|
||||
def plot_dbscan(self) -> None:
|
||||
'''
|
||||
Output:
|
||||
-------
|
||||
A matplotlib plot that show points as core and noise along
|
||||
with the circle that lie within it.
|
||||
|
||||
>>> DbScan(4,1.9).plot_dbscan()
|
||||
Plotted Successfully
|
||||
'''
|
||||
if type(self.file) is str:
|
||||
data = pd.read_csv(self.file)
|
||||
else:
|
||||
data = pd.DataFrame(list(self.file))
|
||||
e = self.radius
|
||||
for i in self.dict1:
|
||||
if len(self.dict1[i]) >= self.minpts:
|
||||
plt.scatter(data['x'][i-1], data['y'][i-1], color='red')
|
||||
circle = plt.Circle((data['x'][i-1], data['y'][i-1]),
|
||||
e, color='blue', fill=False)
|
||||
plt.gca().add_artist(circle)
|
||||
plt.text(data['x'][i-1], data['y'][i-1],
|
||||
'P'+str(i), ha='center', va='bottom')
|
||||
else:
|
||||
plt.scatter(data['x'][i-1], data['y'][i-1], color='green')
|
||||
plt.text(data['x'][i-1], data['y'][i-1],
|
||||
'P'+str(i), ha='center', va='bottom')
|
||||
plt.xlabel('X')
|
||||
plt.ylabel('Y')
|
||||
plt.title('DBSCAN Clustering')
|
||||
plt.legend(['Core','Noise'])
|
||||
plt.show()
|
||||
print("Plotted Successfully")
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
doctest.testmod()
|
Loading…
x
Reference in New Issue
Block a user