mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-04-21 21:27:36 +00:00
add solution for project_euler/problem_009
This commit is contained in:
parent
e9e7c96465
commit
cdc6bd1762
74
project_euler/problem_009/sol4.py
Normal file
74
project_euler/problem_009/sol4.py
Normal file
@ -0,0 +1,74 @@
|
||||
"""
|
||||
Project Euler Problem 9: https://projecteuler.net/problem=9
|
||||
|
||||
Special Pythagorean triplet
|
||||
|
||||
A Pythagorean triplet is a set of three natural numbers, a < b < c, for which,
|
||||
|
||||
a^2 + b^2 = c^2
|
||||
|
||||
For example, 3^2 + 4^2 = 9 + 16 = 25 = 5^2.
|
||||
|
||||
There exists exactly one Pythagorean triplet for which a + b + c = 1000.
|
||||
Find the product a*b*c.
|
||||
|
||||
Solution:
|
||||
Let's consider the constraint a + b + c = n (n = 1000) and think of the values
|
||||
we can get for each variable while satisfying the constraint. We can have:
|
||||
a = 333, b = 333, c = 334
|
||||
a = 500, b = 500, c = 0
|
||||
a = 5, b = 990, c = 5
|
||||
and various other combinations. Note that at least one value has to be
|
||||
at least 333 (or n//3 as n = 1000). Raising at least one variable to
|
||||
nearly n//2 value decreases another variable's value.
|
||||
|
||||
When we introduce the constraint a < b < c, we will have combinations of
|
||||
three distinct values. The triplet cannot form an isoceles triangle.
|
||||
Thus, we observe:
|
||||
a = 167, b = 333, c = 500
|
||||
a = 331, b = 333, c = 336
|
||||
a = 1, b = 499, c = 500
|
||||
If n is even, only two variables will be odd or all will have even values.
|
||||
Furthermore, the constraint a**2 + b**2 = c**2 suggest the if 'a' or 'b' is odd
|
||||
then 'c' is odd too and vice versa.
|
||||
|
||||
Therefore, our solution will:
|
||||
- use "a + b + c = 1000" to elimiate 'c' (and hence remove a third for loop)
|
||||
by having "c = 1000 - a - b" and hence comparing a**2 + b**2 = (1000-a-b)**2
|
||||
- have an odd number and an even number to ensure 'a' and 'b' are distinct
|
||||
- iterate for values of 'b' from (n//2 - 1) to (n//3 + 1) to ensure
|
||||
that minimum value of 'c' can be (n//2) and 'a' can be (n//3) at maximum,
|
||||
thus satisfying the constraint a < b < c and a + b + c = n
|
||||
|
||||
References:
|
||||
- https://en.wikipedia.org/wiki/Pythagorean_triple
|
||||
"""
|
||||
|
||||
|
||||
def solution(n: int = 1000) -> int:
|
||||
"""
|
||||
Returns the product of a,b,c which are Pythagorean Triplet that satisfies
|
||||
the following:
|
||||
1. a < b < c
|
||||
2. a**2 + b**2 = c**2
|
||||
3. a + b + c = 1000
|
||||
|
||||
>>> solution()
|
||||
31875000
|
||||
>>> solution(910)
|
||||
11602500
|
||||
>>> solution(2002)
|
||||
123543420
|
||||
"""
|
||||
|
||||
for b in range(n // 2 - 1, n // 3, -2):
|
||||
for a in range(b - 1, 0, -2):
|
||||
c = n - b - a
|
||||
if b > c: # constraint a < b < c should be satisfied
|
||||
continue
|
||||
if a**2 + b**2 == c**2: # is it a pythagorean triplet
|
||||
return a * b * c
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(f"{solution() = }")
|
Loading…
x
Reference in New Issue
Block a user