diff --git a/DIRECTORY.md b/DIRECTORY.md index 5c63e6316..55781df03 100644 --- a/DIRECTORY.md +++ b/DIRECTORY.md @@ -554,6 +554,7 @@ * [Word Frequency Functions](machine_learning/word_frequency_functions.py) * [Xgboost Classifier](machine_learning/xgboost_classifier.py) * [Xgboost Regressor](machine_learning/xgboost_regressor.py) + * [Apriori Algorithm](machine_learning/apriori_algorithm.py) ## Maths * [Abs](maths/abs.py) diff --git a/machine_learning/apriori_algorithm.py b/machine_learning/apriori_algorithm.py new file mode 100644 index 000000000..d9fd1f82e --- /dev/null +++ b/machine_learning/apriori_algorithm.py @@ -0,0 +1,112 @@ +""" +Apriori Algorithm is a Association rule mining technique, also known as market basket +analysis, aims to discover interesting relationships or associations among a set of +items in a transactional or relational database. + +For example, Apriori Algorithm states: "If a customer buys item A and item B, then they +are likely to buy item C." This rule suggests a relationship between items A, B, and C, +indicating that customers who purchased A and B are more likely to also purchase item C. + +WIKI: https://en.wikipedia.org/wiki/Apriori_algorithm +Examples: https://www.kaggle.com/code/earthian/apriori-association-rules-mining +""" +from itertools import combinations + + +def load_data() -> list[list[str]]: + """ + Returns a sample transaction dataset. + + >>> load_data() + [['milk'], ['milk', 'butter'], ['milk', 'bread'], ['milk', 'bread', 'chips']] + """ + return [["milk"], ["milk", "butter"], ["milk", "bread"], ["milk", "bread", "chips"]] + + +def prune(itemset: list, candidates: list, length: int) -> list: + """ + Prune candidate itemsets that are not frequent. + The goal of pruning is to filter out candidate itemsets that are not frequent. This + is done by checking if all the (k-1) subsets of a candidate itemset are present in + the frequent itemsets of the previous iteration (valid subsequences of the frequent + itemsets from the previous iteration). + + Prunes candidate itemsets that are not frequent. + + >>> itemset = ['X', 'Y', 'Z'] + >>> candidates = [['X', 'Y'], ['X', 'Z'], ['Y', 'Z']] + >>> prune(itemset, candidates, 2) + [['X', 'Y'], ['X', 'Z'], ['Y', 'Z']] + + >>> itemset = ['1', '2', '3', '4'] + >>> candidates = ['1', '2', '4'] + >>> prune(itemset, candidates, 3) + [] + """ + pruned = [] + for candidate in candidates: + is_subsequence = True + for item in candidate: + if item not in itemset or itemset.count(item) < length - 1: + is_subsequence = False + break + if is_subsequence: + pruned.append(candidate) + return pruned + + +def apriori(data: list[list[str]], min_support: int) -> list[tuple[list[str], int]]: + """ + Returns a list of frequent itemsets and their support counts. + + >>> data = [['A', 'B', 'C'], ['A', 'B'], ['A', 'C'], ['A', 'D'], ['B', 'C']] + >>> apriori(data, 2) + [(['A', 'B'], 1), (['A', 'C'], 2), (['B', 'C'], 2)] + + >>> data = [['1', '2', '3'], ['1', '2'], ['1', '3'], ['1', '4'], ['2', '3']] + >>> apriori(data, 3) + [] + """ + itemset = [list(transaction) for transaction in data] + frequent_itemsets = [] + length = 1 + + while itemset: + # Count itemset support + counts = [0] * len(itemset) + for transaction in data: + for j, candidate in enumerate(itemset): + if all(item in transaction for item in candidate): + counts[j] += 1 + + # Prune infrequent itemsets + itemset = [item for i, item in enumerate(itemset) if counts[i] >= min_support] + + # Append frequent itemsets (as a list to maintain order) + for i, item in enumerate(itemset): + frequent_itemsets.append((sorted(item), counts[i])) + + length += 1 + itemset = prune(itemset, list(combinations(itemset, length)), length) + + return frequent_itemsets + + +if __name__ == "__main__": + """ + Apriori algorithm for finding frequent itemsets. + + Args: + data: A list of transactions, where each transaction is a list of items. + min_support: The minimum support threshold for frequent itemsets. + + Returns: + A list of frequent itemsets along with their support counts. + """ + import doctest + + doctest.testmod() + + # user-defined threshold or minimum support level + frequent_itemsets = apriori(data=load_data(), min_support=2) + print("\n".join(f"{itemset}: {support}" for itemset, support in frequent_itemsets))