mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-19 08:47:01 +00:00
Merge pull request #1 from ltdouthit/Maths/Numerical_Intergration
Maths/numerical intergration
This commit is contained in:
commit
d0268c2651
47
Maths/SimpsonRule.py
Normal file
47
Maths/SimpsonRule.py
Normal file
|
@ -0,0 +1,47 @@
|
||||||
|
|
||||||
|
'''
|
||||||
|
Numerical integration or quadrature for a smooth function f with known values at x_i
|
||||||
|
|
||||||
|
This method is the classical approch of suming 'Equally Spaced Abscissas'
|
||||||
|
|
||||||
|
method 2:
|
||||||
|
"Simpson Rule"
|
||||||
|
|
||||||
|
'''
|
||||||
|
|
||||||
|
def method_2(boundary, steps):
|
||||||
|
# "Simpson Rule"
|
||||||
|
# int(f) = delta_x/2 * (b-a)/3*(f1 + 4f2 + 2f_3 + ... + fn)
|
||||||
|
h = (boundary[1] - boundary[0]) / steps
|
||||||
|
a = boundary[0]
|
||||||
|
b = boundary[1]
|
||||||
|
x_i = makePoints(a,b,h)
|
||||||
|
y = 0.0
|
||||||
|
y += (h/3.0)*f(a)
|
||||||
|
cnt = 2
|
||||||
|
for i in x_i:
|
||||||
|
y += (h/3)*(4-2*(cnt%2))*f(i)
|
||||||
|
cnt += 1
|
||||||
|
y += (h/3.0)*f(b)
|
||||||
|
return y
|
||||||
|
|
||||||
|
def makePoints(a,b,h):
|
||||||
|
x = a + h
|
||||||
|
while x < (b-h):
|
||||||
|
yield x
|
||||||
|
x = x + h
|
||||||
|
|
||||||
|
def f(x): #enter your function here
|
||||||
|
y = (x-0)*(x-0)
|
||||||
|
return y
|
||||||
|
|
||||||
|
def main():
|
||||||
|
a = 0.0 #Lower bound of integration
|
||||||
|
b = 1.0 #Upper bound of integration
|
||||||
|
steps = 10.0 #define number of steps or resolution
|
||||||
|
boundary = [a, b] #define boundary of integration
|
||||||
|
y = method_2(boundary, steps)
|
||||||
|
print 'y = {0}'.format(y)
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
45
Maths/TrapezoidalRule.py
Normal file
45
Maths/TrapezoidalRule.py
Normal file
|
@ -0,0 +1,45 @@
|
||||||
|
'''
|
||||||
|
Numerical integration or quadrature for a smooth function f with known values at x_i
|
||||||
|
|
||||||
|
This method is the classical approch of suming 'Equally Spaced Abscissas'
|
||||||
|
|
||||||
|
method 1:
|
||||||
|
"extended trapezoidal rule"
|
||||||
|
|
||||||
|
'''
|
||||||
|
|
||||||
|
def method_1(boundary, steps):
|
||||||
|
# "extended trapezoidal rule"
|
||||||
|
# int(f) = dx/2 * (f1 + 2f2 + ... + fn)
|
||||||
|
h = (boundary[1] - boundary[0]) / steps
|
||||||
|
a = boundary[0]
|
||||||
|
b = boundary[1]
|
||||||
|
x_i = makePoints(a,b,h)
|
||||||
|
y = 0.0
|
||||||
|
y += (h/2.0)*f(a)
|
||||||
|
for i in x_i:
|
||||||
|
#print(i)
|
||||||
|
y += h*f(i)
|
||||||
|
y += (h/2.0)*f(b)
|
||||||
|
return y
|
||||||
|
|
||||||
|
def makePoints(a,b,h):
|
||||||
|
x = a + h
|
||||||
|
while x < (b-h):
|
||||||
|
yield x
|
||||||
|
x = x + h
|
||||||
|
|
||||||
|
def f(x): #enter your function here
|
||||||
|
y = (x-0)*(x-0)
|
||||||
|
return y
|
||||||
|
|
||||||
|
def main():
|
||||||
|
a = 0.0 #Lower bound of integration
|
||||||
|
b = 1.0 #Upper bound of integration
|
||||||
|
steps = 10.0 #define number of steps or resolution
|
||||||
|
boundary = [a, b] #define boundary of integration
|
||||||
|
y = method_1(boundary, steps)
|
||||||
|
print 'y = {0}'.format(y)
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
Loading…
Reference in New Issue
Block a user