Merge pull request #1 from ltdouthit/Maths/Numerical_Intergration

Maths/numerical intergration
This commit is contained in:
Lane Douthit 2018-02-22 09:03:39 -07:00 committed by GitHub
commit d0268c2651
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 92 additions and 0 deletions

47
Maths/SimpsonRule.py Normal file
View File

@ -0,0 +1,47 @@
'''
Numerical integration or quadrature for a smooth function f with known values at x_i
This method is the classical approch of suming 'Equally Spaced Abscissas'
method 2:
"Simpson Rule"
'''
def method_2(boundary, steps):
# "Simpson Rule"
# int(f) = delta_x/2 * (b-a)/3*(f1 + 4f2 + 2f_3 + ... + fn)
h = (boundary[1] - boundary[0]) / steps
a = boundary[0]
b = boundary[1]
x_i = makePoints(a,b,h)
y = 0.0
y += (h/3.0)*f(a)
cnt = 2
for i in x_i:
y += (h/3)*(4-2*(cnt%2))*f(i)
cnt += 1
y += (h/3.0)*f(b)
return y
def makePoints(a,b,h):
x = a + h
while x < (b-h):
yield x
x = x + h
def f(x): #enter your function here
y = (x-0)*(x-0)
return y
def main():
a = 0.0 #Lower bound of integration
b = 1.0 #Upper bound of integration
steps = 10.0 #define number of steps or resolution
boundary = [a, b] #define boundary of integration
y = method_2(boundary, steps)
print 'y = {0}'.format(y)
if __name__ == '__main__':
main()

45
Maths/TrapezoidalRule.py Normal file
View File

@ -0,0 +1,45 @@
'''
Numerical integration or quadrature for a smooth function f with known values at x_i
This method is the classical approch of suming 'Equally Spaced Abscissas'
method 1:
"extended trapezoidal rule"
'''
def method_1(boundary, steps):
# "extended trapezoidal rule"
# int(f) = dx/2 * (f1 + 2f2 + ... + fn)
h = (boundary[1] - boundary[0]) / steps
a = boundary[0]
b = boundary[1]
x_i = makePoints(a,b,h)
y = 0.0
y += (h/2.0)*f(a)
for i in x_i:
#print(i)
y += h*f(i)
y += (h/2.0)*f(b)
return y
def makePoints(a,b,h):
x = a + h
while x < (b-h):
yield x
x = x + h
def f(x): #enter your function here
y = (x-0)*(x-0)
return y
def main():
a = 0.0 #Lower bound of integration
b = 1.0 #Upper bound of integration
steps = 10.0 #define number of steps or resolution
boundary = [a, b] #define boundary of integration
y = method_1(boundary, steps)
print 'y = {0}'.format(y)
if __name__ == '__main__':
main()