From d0bc9e268d33b495cadeafc6613029989bc26aac Mon Sep 17 00:00:00 2001 From: Michael D Date: Sat, 21 Nov 2020 03:07:47 +0100 Subject: [PATCH] Add solution for Project Euler problem 188 (#2880) * Project Euler problem 188 solution * fix superscript notation * split out modexpt() function, and rename parameters * Add some more doctest, and add type hints * Add some reference links * Update docstrings and mark helper function private * Fix doctests and remove/improve redundant comments * fix as per style guide --- project_euler/problem_188/__init__.py | 0 project_euler/problem_188/sol1.py | 68 +++++++++++++++++++++++++++ 2 files changed, 68 insertions(+) create mode 100644 project_euler/problem_188/__init__.py create mode 100644 project_euler/problem_188/sol1.py diff --git a/project_euler/problem_188/__init__.py b/project_euler/problem_188/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/project_euler/problem_188/sol1.py b/project_euler/problem_188/sol1.py new file mode 100644 index 000000000..6473c6362 --- /dev/null +++ b/project_euler/problem_188/sol1.py @@ -0,0 +1,68 @@ +""" +Project Euler Problem 188: https://projecteuler.net/problem=188 + +The hyperexponentiation of a number + +The hyperexponentiation or tetration of a number a by a positive integer b, +denoted by a↑↑b or b^a, is recursively defined by: + +a↑↑1 = a, +a↑↑(k+1) = a(a↑↑k). + +Thus we have e.g. 3↑↑2 = 3^3 = 27, hence 3↑↑3 = 3^27 = 7625597484987 and +3↑↑4 is roughly 103.6383346400240996*10^12. + +Find the last 8 digits of 1777↑↑1855. + +References: + - https://en.wikipedia.org/wiki/Tetration +""" + + +# small helper function for modular exponentiation +def _modexpt(base: int, exponent: int, modulo_value: int) -> int: + """ + Returns the modular exponentiation, that is the value + of `base ** exponent % modulo_value`, without calculating + the actual number. + >>> _modexpt(2, 4, 10) + 6 + >>> _modexpt(2, 1024, 100) + 16 + >>> _modexpt(13, 65535, 7) + 6 + """ + + if exponent == 1: + return base + if exponent % 2 == 0: + x = _modexpt(base, exponent / 2, modulo_value) % modulo_value + return (x * x) % modulo_value + else: + return (base * _modexpt(base, exponent - 1, modulo_value)) % modulo_value + + +def solution(base: int = 1777, height: int = 1855, digits: int = 8) -> int: + """ + Returns the last 8 digits of the hyperexponentiation of base by + height, i.e. the number base↑↑height: + + >>> solution(base=3, height=2) + 27 + >>> solution(base=3, height=3) + 97484987 + >>> solution(base=123, height=456, digits=4) + 2547 + """ + + # calculate base↑↑height by right-assiciative repeated modular + # exponentiation + result = base + for i in range(1, height): + result = _modexpt(base, result, 10 ** digits) + + return result + + +if __name__ == "__main__": + print(f"{solution() = }")