mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 00:07:00 +00:00
Add Project Euler problem 800 solution 1 (#8567)
Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
9e0c357a57
commit
d66e1e8732
|
@ -317,6 +317,7 @@
|
|||
* [Longest Sub Array](dynamic_programming/longest_sub_array.py)
|
||||
* [Matrix Chain Order](dynamic_programming/matrix_chain_order.py)
|
||||
* [Max Non Adjacent Sum](dynamic_programming/max_non_adjacent_sum.py)
|
||||
* [Max Product Subarray](dynamic_programming/max_product_subarray.py)
|
||||
* [Max Sub Array](dynamic_programming/max_sub_array.py)
|
||||
* [Max Sum Contiguous Subsequence](dynamic_programming/max_sum_contiguous_subsequence.py)
|
||||
* [Min Distance Up Bottom](dynamic_programming/min_distance_up_bottom.py)
|
||||
|
@ -1016,6 +1017,8 @@
|
|||
* [Sol1](project_euler/problem_587/sol1.py)
|
||||
* Problem 686
|
||||
* [Sol1](project_euler/problem_686/sol1.py)
|
||||
* Problem 800
|
||||
* [Sol1](project_euler/problem_800/sol1.py)
|
||||
|
||||
## Quantum
|
||||
* [Bb84](quantum/bb84.py)
|
||||
|
|
0
project_euler/problem_800/__init__.py
Normal file
0
project_euler/problem_800/__init__.py
Normal file
65
project_euler/problem_800/sol1.py
Normal file
65
project_euler/problem_800/sol1.py
Normal file
|
@ -0,0 +1,65 @@
|
|||
"""
|
||||
Project Euler Problem 800: https://projecteuler.net/problem=800
|
||||
|
||||
An integer of the form p^q q^p with prime numbers p != q is called a hybrid-integer.
|
||||
For example, 800 = 2^5 5^2 is a hybrid-integer.
|
||||
|
||||
We define C(n) to be the number of hybrid-integers less than or equal to n.
|
||||
You are given C(800) = 2 and C(800^800) = 10790
|
||||
|
||||
Find C(800800^800800)
|
||||
"""
|
||||
|
||||
from math import isqrt, log2
|
||||
|
||||
|
||||
def calculate_prime_numbers(max_number: int) -> list[int]:
|
||||
"""
|
||||
Returns prime numbers below max_number
|
||||
|
||||
>>> calculate_prime_numbers(10)
|
||||
[2, 3, 5, 7]
|
||||
"""
|
||||
|
||||
is_prime = [True] * max_number
|
||||
for i in range(2, isqrt(max_number - 1) + 1):
|
||||
if is_prime[i]:
|
||||
for j in range(i**2, max_number, i):
|
||||
is_prime[j] = False
|
||||
|
||||
return [i for i in range(2, max_number) if is_prime[i]]
|
||||
|
||||
|
||||
def solution(base: int = 800800, degree: int = 800800) -> int:
|
||||
"""
|
||||
Returns the number of hybrid-integers less than or equal to base^degree
|
||||
|
||||
>>> solution(800, 1)
|
||||
2
|
||||
|
||||
>>> solution(800, 800)
|
||||
10790
|
||||
"""
|
||||
|
||||
upper_bound = degree * log2(base)
|
||||
max_prime = int(upper_bound)
|
||||
prime_numbers = calculate_prime_numbers(max_prime)
|
||||
|
||||
hybrid_integers_count = 0
|
||||
left = 0
|
||||
right = len(prime_numbers) - 1
|
||||
while left < right:
|
||||
while (
|
||||
prime_numbers[right] * log2(prime_numbers[left])
|
||||
+ prime_numbers[left] * log2(prime_numbers[right])
|
||||
> upper_bound
|
||||
):
|
||||
right -= 1
|
||||
hybrid_integers_count += right - left
|
||||
left += 1
|
||||
|
||||
return hybrid_integers_count
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
print(f"{solution() = }")
|
Loading…
Reference in New Issue
Block a user