From d691df4e90cbbb15bdf6e04073325230978204a9 Mon Sep 17 00:00:00 2001
From: Bibekananda Hati <bibekanandahati75@gmail.com>
Date: Wed, 20 Nov 2024 23:13:11 +0530
Subject: [PATCH] docstring added to cryptography

---
 cryptography/des_key_generation.ipynb | 158 ------------
 cryptography/extended_eucledian.ipynb |  89 ++++---
 cryptography/galois_field.ipynb       | 358 ++++++++++++++++++--------
 cryptography/lfsr_bit_stream.ipynb    | 243 +++++++++++++----
 cryptography/playfire.ipynb           | 177 +++++++++----
 5 files changed, 622 insertions(+), 403 deletions(-)
 delete mode 100644 cryptography/des_key_generation.ipynb

diff --git a/cryptography/des_key_generation.ipynb b/cryptography/des_key_generation.ipynb
deleted file mode 100644
index 86f1a4725..000000000
--- a/cryptography/des_key_generation.ipynb
+++ /dev/null
@@ -1,158 +0,0 @@
-{
- "cells": [
-  {
-   "cell_type": "code",
-   "execution_count": 1,
-   "id": "1057a613",
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/html": [
-       "<style>.container{width:100%}</style>\n"
-      ],
-      "text/plain": [
-       "<IPython.core.display.HTML object>"
-      ]
-     },
-     "metadata": {},
-     "output_type": "display_data"
-    }
-   ],
-   "source": [
-    "%%HTML\n",
-    "<style>.container{width:100%}</style>"
-   ]
-  },
-  {
-   "cell_type": "markdown",
-   "id": "040e1454",
-   "metadata": {},
-   "source": [
-    "## Key generation for DES for 16 rounds"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 2,
-   "id": "7bd02a30",
-   "metadata": {},
-   "outputs": [
-    {
-     "data": {
-      "text/plain": [
-       "['1B02EFFC7072',\n",
-       " '79AED9DBC9E5',\n",
-       " '55FC8A42CF99',\n",
-       " '72ADD6DB351D',\n",
-       " '7CEC07EB53A8',\n",
-       " '63A53E507B2F',\n",
-       " 'EC84B7F618BC',\n",
-       " 'F78A3AC13BFB',\n",
-       " 'E0DBEBEDE781',\n",
-       " 'B1F347BA464F',\n",
-       " '215FD3DED386',\n",
-       " '7571F59467E9',\n",
-       " '97C5D1FABA41',\n",
-       " '5F43B7F2E73A',\n",
-       " 'BF918D3D3F0A',\n",
-       " 'CB3D8B0E17F5']"
-      ]
-     },
-     "execution_count": 2,
-     "metadata": {},
-     "output_type": "execute_result"
-    }
-   ],
-   "source": [
-    "import random\n",
-    "def r64():\n",
-    "    r64 = ''\n",
-    "    for i in range(8):\n",
-    "        r = str(bin(random.randint(0,2**8)))[2:]\n",
-    "        if(len(r)<8):\n",
-    "            r = '0'*(8-len(r)) + r\n",
-    "        r64 +=r\n",
-    "    return r64\n",
-    "def hex2bin(hexa):\n",
-    "    binstr = bin(int(hexa,16))[2:]\n",
-    "    binstr = binstr.zfill(len(hexa)*4)\n",
-    "    return binstr\n",
-    "\n",
-    "def bin2hex(binary):\n",
-    "    binary = binary.zfill(len(binary) +( 4-len(binary)%4)%4)\n",
-    "    hexa = hex(int(binary,2))[2:].upper()\n",
-    "    return hexa\n",
-    "\n",
-    "\n",
-    "def key_gen(bit64):\n",
-    "    bit64 = '#'+bit64\n",
-    "    PC_1 = [57,49,41,33, 25,17,9,1,\n",
-    "            58,50,42,34, 26,18,10, \n",
-    "            2,59,51,43, 35,27,19,11,\n",
-    "            3,60,52,44, 36,63,55,47,\n",
-    "            39,31,23,15, 7,62,54,46,\n",
-    "            38,30,22,14, 6,61,53,45,\n",
-    "            37,29,21,13, 5,28,20,12,4]\n",
-    "    \n",
-    "    PC_2 = [14,17,11,24, 1,5,3,28,\n",
-    "            15,6,21,10, 23,19,12,4,\n",
-    "            26,8,16,7, 27,20,13,2, 41,52,31,37, 47,55,30,40,51,45,33,48, 44,49,39,56,34,53,46,42, 50,36,29,32]\n",
-    "    bit56 = ''\n",
-    "    for i in PC_1:\n",
-    "        bit56 +=bit64[i]\n",
-    "    L,R = bit56[:28],bit56[28:]\n",
-    "    round_keys = []\n",
-    "    ones = [1,2,9,16]\n",
-    "    for i in range(1,17):\n",
-    "        if(i in ones):\n",
-    "            l = L[1:]+L[:1]\n",
-    "            r = R[1:]+R[:1]\n",
-    "        else:\n",
-    "            l = L[2:]+L[:2]\n",
-    "            r = R[2:]+R[:2]\n",
-    "        k = '#'+l+r\n",
-    "        sub_key = ''\n",
-    "        for i in PC_2:\n",
-    "            sub_key += k[i]\n",
-    "        L,R = l,r\n",
-    "#         print(len(k),len(sub_key))\n",
-    "        round_keys.append(sub_key)\n",
-    "    return round_keys\n",
-    "\n",
-    "test = \"133457799BBCDFF1\"\n",
-    "subkeys = key_gen(hex2bin(test))\n",
-    "[bin2hex(i) for i in subkeys]"
-   ]
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "id": "64b7d8da",
-   "metadata": {},
-   "outputs": [],
-   "source": []
-  }
- ],
- "metadata": {
-  "kernelspec": {
-   "display_name": "Python 3 (ipykernel)",
-   "language": "python",
-   "name": "python3"
-  },
-  "language_info": {
-   "codemirror_mode": {
-    "name": "ipython",
-    "version": 3
-   },
-   "file_extension": ".py",
-   "mimetype": "text/x-python",
-   "name": "python",
-   "nbconvert_exporter": "python",
-   "pygments_lexer": "ipython3",
-   "version": "3.12.3"
-  }
- },
- "nbformat": 4,
- "nbformat_minor": 5
-}
diff --git a/cryptography/extended_eucledian.ipynb b/cryptography/extended_eucledian.ipynb
index a5de1fe8b..fe98c2962 100644
--- a/cryptography/extended_eucledian.ipynb
+++ b/cryptography/extended_eucledian.ipynb
@@ -2,7 +2,7 @@
  "cells": [
   {
    "cell_type": "code",
-   "execution_count": 1,
+   "execution_count": 8,
    "id": "8561e0a7",
    "metadata": {},
    "outputs": [
@@ -26,7 +26,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 2,
+   "execution_count": 7,
    "id": "12f36b2f",
    "metadata": {},
    "outputs": [
@@ -36,27 +36,38 @@
        "21"
       ]
      },
-     "execution_count": 2,
+     "execution_count": 7,
      "metadata": {},
      "output_type": "execute_result"
     }
    ],
    "source": [
-    "def eucld_gcd(a,b):\n",
-    "    if(a < b):\n",
-    "        a , b = b , a\n",
-    "    if(b==0):\n",
+    "def eucld_gcd(a, b):\n",
+    "    \"\"\"\n",
+    "    Computes the greatest common divisor (GCD) of two integers using the Euclidean algorithm.\n",
+    "\n",
+    "    Parameters:\n",
+    "    a (int): The first integer.\n",
+    "    b (int): The second integer.\n",
+    "\n",
+    "    Returns:\n",
+    "    int: The greatest common divisor of a and b.\n",
+    "    \"\"\"\n",
+    "    if a < b:\n",
+    "        a, b = b, a\n",
+    "    if b == 0:\n",
     "        return a\n",
-    "    r = a%b\n",
-    "    if(r==0):\n",
+    "    r = a % b\n",
+    "    if r == 0:\n",
     "        return b\n",
-    "    return eucld_gcd(b,r)\n",
+    "    return eucld_gcd(b, r)\n",
+    "\n",
     "eucld_gcd(252,105)"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 3,
+   "execution_count": 9,
    "id": "c060ee17",
    "metadata": {},
    "outputs": [
@@ -66,45 +77,65 @@
        "[1, -48]"
       ]
      },
-     "execution_count": 3,
+     "execution_count": 9,
      "metadata": {},
      "output_type": "execute_result"
     }
    ],
    "source": [
     "import numpy as np\n",
-    "def ext_eucld(a,b):\n",
+    "\n",
+    "def ext_eucld(a, b):\n",
+    "    \"\"\"\n",
+    "    Computes the extended Euclidean algorithm to find the greatest common divisor (GCD)\n",
+    "    of two integers, and also the coefficients (x, y) of the equation:\n",
+    "    a*x + b*y = GCD(a, b)\n",
+    "\n",
+    "    This method returns the coefficients (x, y) such that a*x + b*y = GCD(a, b).\n",
+    "\n",
+    "    Parameters:\n",
+    "    a (int): The first integer.\n",
+    "    b (int): The second integer.\n",
+    "\n",
+    "    Returns:\n",
+    "    list: A list of two integers [x, y] where x and y are the coefficients for the linear\n",
+    "          combination of a and b that equals their GCD.\n",
+    "    \"\"\"\n",
     "    swap = False\n",
-    "    if(a < b):\n",
-    "            a , b = b , a\n",
-    "            swap = True\n",
-    "    def eucld(a,b):\n",
-    "        if(b==0 or b==1):\n",
+    "    if a < b:\n",
+    "        a, b = b, a\n",
+    "        swap = True\n",
+    "\n",
+    "    def eucld(a, b):\n",
+    "        if b == 0 or b == 1:\n",
     "            return []\n",
     "        ls = []\n",
-    "        while b!=1:\n",
-    "            r = a%b\n",
-    "            if(r==0):\n",
+    "        while b != 1:\n",
+    "            r = a % b\n",
+    "            if r == 0:\n",
     "                return ls\n",
-    "            idx = (a-r)//b\n",
+    "            idx = (a - r) // b\n",
     "            ls.append(idx)\n",
     "            a = b\n",
     "            b = r\n",
     "        return ls\n",
-    "    \n",
-    "    row = np.array([[1,0],[0,1]])\n",
-    "    ls = eucld(a,b)\n",
+    "\n",
+    "    row = np.array([[1, 0], [0, 1]])\n",
+    "    ls = eucld(a, b)\n",
     "    for i in ls:\n",
-    "        row = np.append(row, [row[-2] - i*row[-1]] ,axis=0)\n",
-    "    if(swap):\n",
+    "        row = np.append(row, [row[-2] - i * row[-1]], axis=0)\n",
+    "    \n",
+    "    if swap:\n",
     "        return list(row[-1])[::-1]\n",
+    "    \n",
     "    return list(row[-1])\n",
-    "ext_eucld(97,2)"
+    "\n",
+    "ext_eucld(97, 2)\n"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 4,
+   "execution_count": 10,
    "id": "d3edd1f6",
    "metadata": {},
    "outputs": [
diff --git a/cryptography/galois_field.ipynb b/cryptography/galois_field.ipynb
index 2a9e19353..ac68caa85 100644
--- a/cryptography/galois_field.ipynb
+++ b/cryptography/galois_field.ipynb
@@ -26,9 +26,13 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 2,
+   "execution_count": 11,
    "id": "62243eff",
-   "metadata": {},
+   "metadata": {
+    "jupyter": {
+     "source_hidden": true
+    }
+   },
    "outputs": [
     {
      "data": {
@@ -36,120 +40,225 @@
        "[0, 0, 0, 0, 1, 1, 0, 1]"
       ]
      },
-     "execution_count": 2,
+     "execution_count": 11,
      "metadata": {},
      "output_type": "execute_result"
     }
    ],
    "source": [
-    "def id2bit(ls:list):\n",
-    "    if(len(ls)==0):\n",
-    "        return [0,0,0,0, 0,0,0,0]\n",
-    "    aa = [0 for i in range(max(ls)+1)]\n",
+    "def id2bit(ls: list):\n",
+    "    \"\"\"\n",
+    "    Converts a list of indices into a binary representation (bit vector).\n",
+    "    \n",
+    "    Given a list of indices (ls), this function returns a list of bits where \n",
+    "    the bit positions corresponding to the indices in the list are set to 1, \n",
+    "    and all other positions are set to 0. The resulting list is reversed.\n",
+    "    \n",
+    "    Args:\n",
+    "        ls (list): A list of indices to be converted to bits.\n",
+    "        \n",
+    "    Returns:\n",
+    "        list: A list of bits representing the binary values.\n",
+    "    \"\"\"\n",
+    "    if(len(ls) == 0):\n",
+    "        return [0, 0, 0, 0, 0, 0, 0, 0]  # Return a default 8-bit array\n",
+    "    aa = [0 for _ in range(max(ls) + 1)]\n",
     "    for i in ls:\n",
-    "        aa[i]=1\n",
+    "        aa[i] = 1\n",
     "    return aa[::-1]\n",
-    "def bit2id(ls:list,log=False):\n",
+    "\n",
+    "def bit2id(ls: list, log=False):\n",
+    "    \"\"\"\n",
+    "    Converts a binary list (bit vector) back to a list of indices.\n",
+    "    \n",
+    "    Given a list of bits (ls), this function returns the indices of the bits\n",
+    "    that are set to 1. The binary list is reversed during the conversion.\n",
+    "    \n",
+    "    Args:\n",
+    "        ls (list): A list of bits representing a binary value.\n",
+    "        log (bool, optional): Whether to log intermediate steps (default is False).\n",
+    "        \n",
+    "    Returns:\n",
+    "        list: A list of indices where the bits are set to 1.\n",
+    "    \"\"\"\n",
     "    ls = ls[::-1]\n",
-    "    aa =[]\n",
+    "    aa = []\n",
     "    \n",
     "    for i in range(len(ls)):\n",
-    "        if(ls[i]==1):\n",
+    "        if(ls[i] == 1):\n",
     "            aa.append(i)\n",
     "    return aa[::-1]\n",
     "\n",
-    "def bit2mul(a,b,log=False):\n",
+    "def bit2mul(a, b, log=False):\n",
+    "    \"\"\"\n",
+    "    Multiplies two binary numbers represented as lists of bits.\n",
     "    \n",
+    "    This function multiplies two binary numbers by performing a bitwise \n",
+    "    multiplication and addition over Galois Field (GF(2)).\n",
+    "    \n",
+    "    Args:\n",
+    "        a (list): A list of bits representing the first binary number.\n",
+    "        b (list): A list of bits representing the second binary number.\n",
+    "        log (bool, optional): Whether to log intermediate steps (default is False).\n",
+    "        \n",
+    "    Returns:\n",
+    "        list: The resulting binary number (list of bits).\n",
+    "    \"\"\"\n",
     "    ai = bit2id(a)\n",
     "    bi = bit2id(b)\n",
-    "    a,b = a[::-1],b[::-1]\n",
+    "    a, b = a[::-1], b[::-1]\n",
     "    \n",
-    "    if(ai==[]):\n",
+    "    if(ai == []):\n",
     "        return a\n",
-    "    elif(bi==[]):\n",
+    "    elif(bi == []):\n",
     "        return b\n",
     "    \n",
-    "    addn = [ [ ai[i]+bi[j] for j in range(len(bi)) ][::-1] for i in range(len(ai)) ][::-1]\n",
+    "    addn = [[ai[i] + bi[j] for j in range(len(bi))][::-1] for i in range(len(ai))][::-1]\n",
     "    addn = [id2bit(i) for i in addn]\n",
     "    \n",
     "    maxsiz = max([len(i) for i in addn])\n",
     "    for i in range(len(addn)):\n",
-    "        if(len(addn[i])<maxsiz):\n",
-    "            addn[i] = [0 for j in range(maxsiz-len(addn[i]))]+addn[i]\n",
-    "    smm=[]\n",
+    "        if(len(addn[i]) < maxsiz):\n",
+    "            addn[i] = [0 for _ in range(maxsiz - len(addn[i]))] + addn[i]\n",
+    "    \n",
+    "    smm = []\n",
     "    for i in range(maxsiz):\n",
-    "        t= 0\n",
+    "        t = 0\n",
     "        for j in addn:\n",
     "            t += j[i]\n",
-    "        smm.append(t%2)\n",
+    "        smm.append(t % 2)\n",
+    "    \n",
     "    return smm\n",
     "\n",
-    "def bit2add(a,b):\n",
-    "    a,b = list(a),list(b)\n",
-    "    a,b=a[::-1],b[::-1]\n",
-    "    maxsiz=max(len(a),len(b))\n",
+    "def bit2add(a, b):\n",
+    "    \"\"\"\n",
+    "    Adds two binary numbers represented as lists of bits (bitwise addition).\n",
     "    \n",
+    "    This function adds two binary numbers by performing a bitwise addition over GF(2).\n",
     "    \n",
-    "    if(len(a)<maxsiz):\n",
-    "            a = a+[0 for j in range(maxsiz-len(a))]\n",
-    "    if(len(b)<maxsiz):\n",
-    "            b = b+[0 for j in range(maxsiz-len(b))]\n",
-    "    smm=[]\n",
+    "    Args:\n",
+    "        a (list): A list of bits representing the first binary number.\n",
+    "        b (list): A list of bits representing the second binary number.\n",
+    "        \n",
+    "    Returns:\n",
+    "        list: The resulting binary number after addition (list of bits).\n",
+    "    \"\"\"\n",
+    "    a, b = list(a), list(b)\n",
+    "    a, b = a[::-1], b[::-1]\n",
+    "    maxsiz = max(len(a), len(b))\n",
+    "    \n",
+    "    if(len(a) < maxsiz):\n",
+    "        a = a + [0 for _ in range(maxsiz - len(a))]\n",
+    "    if(len(b) < maxsiz):\n",
+    "        b = b + [0 for _ in range(maxsiz - len(b))]\n",
+    "    \n",
+    "    smm = []\n",
     "    for i in range(maxsiz):\n",
-    "        smm.append((a[i]+b[i])%2)\n",
+    "        smm.append((a[i] + b[i]) % 2)\n",
+    "    \n",
     "    return smm[::-1]\n",
-    "def bit2str(bit:list):\n",
+    "\n",
+    "def bit2str(bit: list):\n",
+    "    \"\"\"\n",
+    "    Converts a list of bits into a string.\n",
+    "    \n",
+    "    This function converts a list of binary bits (0s and 1s) into a string of characters.\n",
+    "    \n",
+    "    Args:\n",
+    "        bit (list): A list of bits (0s and 1s).\n",
+    "        \n",
+    "    Returns:\n",
+    "        str: The string representation of the binary bits.\n",
+    "    \"\"\"\n",
     "    s = \"\"\n",
     "    for i in bit:\n",
-    "        s+=str(i)\n",
+    "        s += str(i)\n",
     "    return s\n",
-    "def str2bit(s:str):\n",
+    "\n",
+    "def str2bit(s: str):\n",
+    "    \"\"\"\n",
+    "    Converts a string of '0's and '1's into a list of bits.\n",
+    "    \n",
+    "    This function converts a string containing '0's and '1's into a list of integer bits.\n",
+    "    \n",
+    "    Args:\n",
+    "        s (str): A string containing '0's and '1's.\n",
+    "        \n",
+    "    Returns:\n",
+    "        list: A list of bits (integers).\n",
+    "        \n",
+    "    Raises:\n",
+    "        ValueError: If the string contains characters other than '0' and '1'.\n",
+    "    \"\"\"\n",
     "    if(set(s).issubset(set('01'))):\n",
-    "        bit=[]\n",
-    "        for i in s:\n",
-    "            bit.append(int(i))\n",
+    "        bit = [int(i) for i in s]\n",
     "        return bit\n",
     "    else:\n",
     "        print(\"bit string should contain 1s and 0s\")\n",
-    "def modgf(dsr:list,dnt = [1, 0, 0, 0, 1, 1, 0, 1, 1]):\n",
+    "\n",
+    "def modgf(dsr: list, dnt = [1, 0, 0, 0, 1, 1, 0, 1, 1]):\n",
+    "    \"\"\"\n",
+    "    Performs polynomial division over Galois Field (GF(2)).\n",
+    "\n",
+    "    This function divides the binary polynomial `dsr` by the binary polynomial `dnt`\n",
+    "    and returns the quotient and remainder.\n",
+    "    \n",
+    "    Args:\n",
+    "        dsr (list): The dividend as a list of bits (binary polynomial).\n",
+    "        dnt (list, optional): The divisor as a list of bits (default is a predefined irreducible polynomial).\n",
+    "        \n",
+    "    Returns:\n",
+    "        tuple: The remainder and quotient as lists of bits.\n",
+    "    \"\"\"\n",
     "    dsr = bit2id(dsr)\n",
     "    dnt = bit2id(dnt)\n",
     "    qtnt = []\n",
-    "    while (len(dnt)!=0 and len(dsr)!=0 and (max(dnt)-max(dsr)>=0)):\n",
-    "        ml = max(dnt)-max(dsr)\n",
+    "    \n",
+    "    while (len(dnt) != 0 and len(dsr) != 0 and (max(dnt) - max(dsr) >= 0)):\n",
+    "        ml = max(dnt) - max(dsr)\n",
     "        qtnt.append(ml)\n",
     "        plus = id2bit(dnt)\n",
-    "        minus = id2bit([ml+i for i in dsr])\n",
-    "        rem = bit2add(plus,minus)\n",
+    "        minus = id2bit([ml + i for i in dsr])\n",
+    "        rem = bit2add(plus, minus)\n",
     "        dnt = bit2id(rem)\n",
-    "    return id2bit(dnt),id2bit(qtnt)\n",
+    "    \n",
+    "    return id2bit(dnt), id2bit(qtnt)\n",
     "\n",
+    "def ext_eucld(a, b, log=False):\n",
+    "    \"\"\"\n",
+    "    Extended Euclidean algorithm for binary polynomials.\n",
     "\n",
-    "\n",
-    "\n",
-    "\n",
-    "\n",
-    "# import numpy as np\n",
-    "def ext_eucld(a,b,log=False):\n",
-    "    ai,bi = bit2id(a),bit2id(b)\n",
-    "    if((len(ai)!=0 and len(bi)!=0)):\n",
-    "        if(max(max(ai),max(bi))==max(bi)):\n",
-    "            a,b=b,a\n",
-    "    elif(len(ai)==0 and len(bi)!=0):\n",
-    "        a,b=b,a\n",
-    "    def eucld(a,b,log=False):\n",
+    "    This function computes the extended Euclidean algorithm for binary polynomials `a` and `b`,\n",
+    "    returning the coefficients of the linear combination of `a` and `b` that equals the greatest common divisor (GCD).\n",
+    "    \n",
+    "    Args:\n",
+    "        a (list): A list of bits representing the first binary polynomial.\n",
+    "        b (list): A list of bits representing the second binary polynomial.\n",
+    "        log (bool, optional): Whether to log intermediate steps (default is False).\n",
     "        \n",
-    "        a,b = a[::-1],b[::-1]\n",
-    "        if(set(b)==set([0]) or (b[0]==1 and (set(b[1:])==set([0])))):\n",
+    "    Returns:\n",
+    "        list: The coefficients of the linear combination of `a` and `b` (as lists of bits).\n",
+    "    \"\"\"\n",
+    "    ai, bi = bit2id(a), bit2id(b)\n",
+    "    if((len(ai) != 0 and len(bi) != 0)):\n",
+    "        if(max(max(ai), max(bi)) == max(bi)):\n",
+    "            a, b = b, a\n",
+    "    elif(len(ai) == 0 and len(bi) != 0):\n",
+    "        a, b = b, a\n",
+    "    \n",
+    "    def eucld(a, b, log=False):\n",
+    "        a, b = a[::-1], b[::-1]\n",
+    "        \n",
+    "        if(set(b) == set([0]) or (b[0] == 1 and (set(b[1:]) == set([0])))):\n",
     "            return []\n",
+    "        \n",
     "        ls = []\n",
     "        \n",
-    "        while not (b[0]==1 and (set(b[1:])==set([0]))):\n",
+    "        while not (b[0] == 1 and (set(b[1:]) == set([0]))):\n",
+    "            r, idx = modgf(b[::-1], dnt=a[::-1])\n",
+    "            r, idx = r[::-1], idx[::-1]\n",
     "            \n",
-    "            r,idx = modgf(b[::-1],dnt=a[::-1])\n",
-    "            r,idx = r[::-1],idx[::-1]\n",
-    "            \n",
-    "            if(set(r)==set([0])):\n",
+    "            if(set(r) == set([0])):\n",
     "                return ls\n",
     "            \n",
     "            ls.append(idx[::-1])\n",
@@ -157,44 +266,45 @@
     "            b = r\n",
     "        return ls\n",
     "    \n",
-    "    row = [[[0,0,0,0, 0,0,0,1],[0,0,0,0, 0,0,0,0]],\n",
-    "                    [[0,0,0,0, 0,0,0,0],[0,0,0,0, 0,0,0,1]]]\n",
-    "    ls = eucld(a,b)\n",
+    "    row = [[[0, 0, 0, 0, 0, 0, 0, 1], [0, 0, 0, 0, 0, 0, 0, 0]],\n",
+    "           [[0, 0, 0, 0, 0, 0, 0, 0], [0, 0, 0, 0, 0, 0, 0, 1]]]\n",
+    "    \n",
+    "    ls = eucld(a, b)\n",
     "    for i in ls:\n",
-    "        r10,r11 = row[-1][0], row[-1][1]\n",
-    "        r20,r21 = row[-2][0], row[-2][1]\n",
-    "        r0 = bit2add(r20,bit2mul(r10,i))\n",
-    "        r1 = bit2add(r21,bit2mul(r11,i))\n",
-    "        rowl = [r0,r1]\n",
+    "        r10, r11 = row[-1][0], row[-1][1]\n",
+    "        r20, r21 = row[-2][0], row[-2][1]\n",
+    "        r0 = bit2add(r20, bit2mul(r10, i))\n",
+    "        r1 = bit2add(r21, bit2mul(r11, i))\n",
+    "        rowl = [r0, r1]\n",
     "        row.append(rowl)\n",
+    "    \n",
     "    return row[-1]\n",
-    "def Gfinv(bit,irrpoly = [1, 0, 0, 0, 1, 1, 0, 1, 1]):\n",
-    "    if(set(bit)==set('0')):\n",
+    "\n",
+    "def Gfinv(bit, irrpoly=[1, 0, 0, 0, 1, 1, 0, 1, 1]):\n",
+    "    \"\"\"\n",
+    "    Computes the multiplicative inverse of a binary polynomial over GF(2).\n",
+    "    \n",
+    "    This function uses the extended Euclidean algorithm to compute the inverse of a binary polynomial `bit`\n",
+    "    with respect to a predefined irreducible polynomial `irrpoly`.\n",
+    "    \n",
+    "    Args:\n",
+    "        bit (list): A list of bits representing the binary polynomial to be inverted.\n",
+    "        irrpoly (list, optional): The irreducible polynomial used for the field (default is a predefined polynomial).\n",
+    "        \n",
+    "    Returns:\n",
+    "        list: The multiplicative inverse of the polynomial `bit` (list of bits).\n",
+    "    \"\"\"\n",
+    "    if(set(bit) == set('0')):\n",
     "        return '--'\n",
-    "    ans = ext_eucld(irrpoly,bit)\n",
+    "    \n",
+    "    ans = ext_eucld(irrpoly, bit)\n",
     "    ans = ans[-1][-len(bit):]\n",
     "    return ans\n",
     "\n",
-    "\n",
-    "Gfinv([0,0,0,0,0,1,0,0],irrpoly=[0,0,0,1, 0,0,1,1])"
+    "# Example call\n",
+    "Gfinv([0, 0, 0, 0, 0, 1, 0, 0], irrpoly=[0, 0, 0, 1, 0, 0, 1, 1])\n"
    ]
   },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "id": "2b8ce266",
-   "metadata": {},
-   "outputs": [],
-   "source": []
-  },
-  {
-   "cell_type": "code",
-   "execution_count": null,
-   "id": "38ba4051",
-   "metadata": {},
-   "outputs": [],
-   "source": []
-  },
   {
    "cell_type": "code",
    "execution_count": null,
@@ -205,37 +315,59 @@
   },
   {
    "cell_type": "code",
-   "execution_count": null,
-   "id": "9410bfdf",
-   "metadata": {},
-   "outputs": [],
-   "source": []
-  },
-  {
-   "cell_type": "code",
-   "execution_count": 3,
+   "execution_count": 12,
    "id": "edb53805",
    "metadata": {},
    "outputs": [],
    "source": [
-    "def genmapping(n:int,irrpoly):\n",
+    "def genmapping(n:int, irrpoly):\n",
+    "    \"\"\"\n",
+    "    Generates the elements of GF(2^n) and their corresponding multiplicative inverses \n",
+    "    based on the provided irreducible polynomial.\n",
+    "\n",
+    "    Parameters:\n",
+    "    n (int): The size of the Galois Field (GF(2^n)). Determines the number of elements \n",
+    "             in the field, which is 2^n.\n",
+    "    irrpoly (list): A list of bits representing the irreducible polynomial used \n",
+    "                    for the finite field operations (e.g., [1, 0, 0, 1] for x^3 + 1).\n",
+    "\n",
+    "    Returns:\n",
+    "    tuple: A tuple containing:\n",
+    "        - gf (list): A list of binary strings of length `n`, representing all elements \n",
+    "                     of GF(2^n). The binary strings are padded with leading zeros.\n",
+    "        - invmap (dict): A dictionary mapping the index of each element in `gf` to the \n",
+    "                         index of its multiplicative inverse, using the irreducible \n",
+    "                         polynomial for the field.\n",
+    "\n",
+    "    Example:\n",
+    "    gf, invmap = genmapping(3, [1, 0, 0, 1])\n",
+    "    # gf will contain the elements ['000', '001', '010', '011', '100', '101', '110', '111']\n",
+    "    # invmap will contain a mapping of the inverses for each non-zero element.\n",
+    "    \"\"\"\n",
     "    gf = [str(bin(i))[2:] for i in range(2**n)]\n",
+    "    \n",
+    "    # Ensure each element has length n (pad with leading zeros if necessary)\n",
     "    for i in range(len(gf)):\n",
-    "        if(len(gf[i])<n):\n",
-    "            gf[i] = '0'*(n-len(gf[i])) + gf[i]\n",
+    "        if len(gf[i]) < n:\n",
+    "            gf[i] = '0' * (n - len(gf[i])) + gf[i]\n",
+    "    \n",
+    "    # Create mappings: index -> element (key2ele) and element -> index (ele2key)\n",
     "    key2ele = dict(enumerate(gf))\n",
     "    ele2key = dict([i[::-1] for i in list(enumerate(gf))])\n",
+    "    \n",
+    "    # Generate the inverse map for all non-zero elements\n",
     "    invmap = dict()\n",
     "    for i in gf:\n",
-    "        if(set(i)!=set('0')):\n",
-    "            inv = bit2str(Gfinv(str2bit(i),irrpoly=irrpoly))\n",
-    "            invmap[ele2key[i]] = ele2key[inv]\n",
-    "    return gf,invmap"
+    "        if set(i) != set('0'):  # Skip zero element\n",
+    "            inv = bit2str(Gfinv(str2bit(i), irrpoly=irrpoly))  # Find the inverse of i\n",
+    "            invmap[ele2key[i]] = ele2key[inv]  # Map the inverse using element-to-key mapping\n",
+    "    \n",
+    "    return gf, invmap\n"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 4,
+   "execution_count": 13,
    "id": "d4ca99d5",
    "metadata": {},
    "outputs": [],
@@ -245,7 +377,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 5,
+   "execution_count": 14,
    "id": "44e4797e",
    "metadata": {},
    "outputs": [
@@ -255,7 +387,7 @@
        "True"
       ]
      },
-     "execution_count": 5,
+     "execution_count": 14,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -266,7 +398,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 6,
+   "execution_count": 15,
    "id": "b08bd2b6",
    "metadata": {},
    "outputs": [
@@ -306,7 +438,7 @@
        " 31: 27}"
       ]
      },
-     "execution_count": 6,
+     "execution_count": 15,
      "metadata": {},
      "output_type": "execute_result"
     }
diff --git a/cryptography/lfsr_bit_stream.ipynb b/cryptography/lfsr_bit_stream.ipynb
index ebec63ed1..948155139 100644
--- a/cryptography/lfsr_bit_stream.ipynb
+++ b/cryptography/lfsr_bit_stream.ipynb
@@ -26,8 +26,8 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 2,
-   "id": "f12511c2-01b6-45f4-b6b6-1bfe1dc93631",
+   "execution_count": 5,
+   "id": "d76a12a2-66f5-48b4-96c7-42cb8c8cae95",
    "metadata": {},
    "outputs": [
     {
@@ -36,36 +36,101 @@
        "[1, 0, 0, 0, 0, 1, 0, 1, 1, 0]"
       ]
      },
-     "execution_count": 2,
+     "execution_count": 5,
      "metadata": {},
      "output_type": "execute_result"
     }
    ],
    "source": [
-    "def id2bit(ls:list):\n",
-    "    if(len(ls)==0):\n",
-    "        return [0,0,0,0, 0,0,0,0]  # Return a default 8-bit array\n",
-    "    aa = [0 for i in range(max(ls)+1)]\n",
+    "def id2bit(ls: list):\n",
+    "    \"\"\"\n",
+    "    Converts a list of indices to a binary representation (bit array).\n",
+    "    \n",
+    "    Given a list of indices, this function creates a binary list where each index in \n",
+    "    the input list is set to 1 in the output list, and all other positions are set to 0. \n",
+    "    The output list is then reversed before returning.\n",
+    "    \n",
+    "    Args:\n",
+    "        ls (list): A list of indices where each index will be set to 1 in the output list.\n",
+    "    \n",
+    "    Returns:\n",
+    "        list: A list of binary values (0s and 1s), where each index in the input list corresponds \n",
+    "              to a 1 in the output binary list, and all other indices are 0.\n",
+    "    \"\"\"\n",
+    "    if len(ls) == 0:\n",
+    "        return [0, 0, 0, 0, 0, 0, 0, 0]  # Return a default 8-bit array\n",
+    "    aa = [0 for i in range(max(ls) + 1)]\n",
     "    for i in ls:\n",
     "        aa[i] = 1\n",
     "    return aa[::-1]\n",
     "\n",
-    "def bit2id(ls:list):\n",
+    "\n",
+    "def bit2id(ls: list):\n",
+    "    \"\"\"\n",
+    "    Converts a binary list (bit array) to a list of indices where the value is 1.\n",
+    "    \n",
+    "    This function iterates over the binary list and returns a list of indices where the binary value is 1.\n",
+    "    The list is reversed before returning.\n",
+    "    \n",
+    "    Args:\n",
+    "        ls (list): A list of binary values (0s and 1s).\n",
+    "    \n",
+    "    Returns:\n",
+    "        list: A list of indices where the corresponding binary value in the input list is 1.\n",
+    "    \"\"\"\n",
     "    ls = ls[::-1]\n",
     "    aa = []\n",
     "    for i in range(len(ls)):\n",
-    "        if(ls[i] == 1):\n",
+    "        if ls[i] == 1:\n",
     "            aa.append(i)\n",
     "    return aa[::-1]\n",
-    "    \n",
+    "\n",
+    "\n",
     "def XOR(*args):\n",
+    "    \"\"\"\n",
+    "    Performs bitwise XOR on a sequence of values.\n",
+    "    \n",
+    "    This function takes any number of arguments and performs the XOR operation iteratively \n",
+    "    across all the input values.\n",
+    "    \n",
+    "    Args:\n",
+    "        *args: A sequence of values (typically integers) on which the XOR operation will be applied.\n",
+    "    \n",
+    "    Returns:\n",
+    "        int: The result of applying the XOR operation across all input values.\n",
+    "    \"\"\"\n",
     "    result = 0\n",
     "    for arg in args:\n",
     "        result ^= arg\n",
     "    return result\n",
-    "    \n",
+    "\n",
+    "\n",
     "class LFSR:\n",
-    "    def __init__(self,start,poly):\n",
+    "    \"\"\"\n",
+    "    A class representing a Linear Feedback Shift Register (LFSR).\n",
+    "    \n",
+    "    This class models an LFSR, which generates a sequence of bits based on an initial state \n",
+    "    and a feedback polynomial. The LFSR can be clocked to generate subsequent bits in the sequence.\n",
+    "    \n",
+    "    Attributes:\n",
+    "        seq (list): The current state (bit sequence) of the LFSR.\n",
+    "        taps (list): The positions of the taps used for feedback calculation.\n",
+    "    \n",
+    "    Methods:\n",
+    "        clock(): Shifts the bits in the LFSR and computes the new bit based on the feedback.\n",
+    "    \"\"\"\n",
+    "    \n",
+    "    def __init__(self, start, poly):\n",
+    "        \"\"\"\n",
+    "        Initializes an LFSR with a start state and a feedback polynomial.\n",
+    "        \n",
+    "        Args:\n",
+    "            start (list): The initial state of the LFSR, represented as a list of bits (0s and 1s).\n",
+    "            poly (list): A list representing the feedback polynomial, with 1s indicating the taps.\n",
+    "        \n",
+    "        Raises:\n",
+    "            ValueError: If the length of the start state does not match the polynomial length minus one.\n",
+    "        \"\"\"\n",
     "        self.seq = start\n",
     "        self.taps = bit2id(poly[:-1])  # ignore the output tap (final bit)\n",
     "\n",
@@ -73,55 +138,129 @@
     "            raise ValueError(\"Polynomial and start value length mismatch\")\n",
     "\n",
     "    def clock(self):\n",
-    "        # print(self.seq) \n",
-    "        feedback = XOR(*[self.seq[bit] for bit in self.taps])\n",
+    "        \"\"\"\n",
+    "        Advances the LFSR by one clock cycle.\n",
     "        \n",
+    "        This method computes the feedback bit by XORing the bits at the tap positions, \n",
+    "        shifts the state, and adds the feedback bit to the beginning of the sequence.\n",
+    "        \"\"\"\n",
+    "        feedback = XOR(*[self.seq[bit] for bit in self.taps])\n",
     "        self.seq = [feedback] + self.seq[:-1]\n",
     "\n",
-    "        \n",
+    "\n",
     "class A51:\n",
-    "    def __init__(self,lfsrs,clock_bits):\n",
+    "    \"\"\"\n",
+    "    A class representing the A5/1 stream cipher.\n",
+    "    \n",
+    "    A51 is a stream cipher used in GSM encryption. It combines three LFSRs and uses a majority rule \n",
+    "    to control which LFSRs are clocked. The output is the XOR of the last bits of the LFSRs.\n",
+    "    \n",
+    "    Attributes:\n",
+    "        lfsrs (list): A list of LFSR instances.\n",
+    "        clock_bits (list): The bit positions used for clocking each LFSR.\n",
+    "        lfsr_count (int): The number of LFSRs used in the cipher.\n",
+    "    \n",
+    "    Methods:\n",
+    "        majority(*bits): Computes the majority bit from a list of bits.\n",
+    "        clock(): Advances the cipher and returns the next bit of the keystream.\n",
+    "    \"\"\"\n",
+    "    \n",
+    "    def __init__(self, lfsrs, clock_bits):\n",
+    "        \"\"\"\n",
+    "        Initializes the A51 cipher with a list of LFSRs and their clocking bits.\n",
+    "        \n",
+    "        Args:\n",
+    "            lfsrs (list): A list of LFSR instances used to generate the keystream.\n",
+    "            clock_bits (list): A list indicating the bit positions in each LFSR to use for majority voting.\n",
+    "        \"\"\"\n",
     "        self.lfsrs = lfsrs\n",
     "        self.clock_bits = clock_bits\n",
     "        self.lfsr_count = len(clock_bits)\n",
+    "\n",
     "    def majority(self, *bits):\n",
-    "        ones = sum(i for i in bits if i==1)\n",
+    "        \"\"\"\n",
+    "        Computes the majority bit from a sequence of bits.\n",
+    "        \n",
+    "        This method determines the majority (1 or 0) from the given bits. If the number of 1s \n",
+    "        is greater than or equal to half of the number of LFSRs, the majority bit is 1; otherwise, it is 0.\n",
+    "        \n",
+    "        Args:\n",
+    "            *bits: A sequence of bits (typically 0s and 1s) for which the majority is to be determined.\n",
+    "        \n",
+    "        Returns:\n",
+    "            int: The majority bit (0 or 1).\n",
+    "        \"\"\"\n",
+    "        ones = sum(i for i in bits if i == 1)\n",
     "        if ones >= self.lfsr_count / 2:\n",
     "            majority_bit = 1\n",
     "        else:\n",
     "            majority_bit = 0\n",
     "        return majority_bit\n",
-    "        \n",
+    "\n",
     "    def clock(self):\n",
+    "        \"\"\"\n",
+    "        Advances the A51 cipher by one clock cycle and generates the next keystream bit.\n",
+    "        \n",
+    "        This method computes the majority bit from the specified clocking positions of the LFSRs, \n",
+    "        clocks the LFSRs if necessary, and outputs the XOR of the last bits of each LFSR as the next \n",
+    "        bit of the keystream.\n",
+    "        \n",
+    "        Returns:\n",
+    "            int: The next bit in the keystream generated by the A51 cipher.\n",
+    "        \"\"\"\n",
     "        majority = self.majority(*[self.lfsrs[i].seq[self.clock_bits[i]] for i in range(self.lfsr_count)])\n",
     "        for i in range(self.lfsr_count):\n",
-    "            if(self.lfsrs[i].seq[self.clock_bits[i]] == majority):\n",
+    "            if self.lfsrs[i].seq[self.clock_bits[i]] == majority:\n",
     "                self.lfsrs[i].clock()\n",
     "        out = XOR(*[int(i.seq[-1]) for i in self.lfsrs])\n",
     "        return out\n",
-    "        \n",
-    "lf1 = LFSR(start=[1,0,1,1],poly=id2bit([4,1]))\n",
-    "lf2 = LFSR(start=[0,1,1,1],poly=id2bit([4,1]))\n",
-    "lf3 = LFSR(start=[1,0,1,0],poly=id2bit([4,1]))\n",
-    "a51 = A51(lfsrs=[lf1,lf2,lf3],clock_bits=[1,2,0])\n",
+    "\n",
+    "\n",
+    "# Example usage\n",
+    "lf1 = LFSR(start=[1, 0, 1, 1], poly=id2bit([4, 1]))\n",
+    "lf2 = LFSR(start=[0, 1, 1, 1], poly=id2bit([4, 1]))\n",
+    "lf3 = LFSR(start=[1, 0, 1, 0], poly=id2bit([4, 1]))\n",
+    "a51 = A51(lfsrs=[lf1, lf2, lf3], clock_bits=[1, 2, 0])\n",
+    "\n",
+    "# Generate a keystream of 10 bits\n",
     "stream = [a51.clock() for i in range(10)]\n",
-    "stream"
+    "stream\n"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 3,
+   "execution_count": 6,
    "id": "182b2a83-d083-4296-a3bc-4d4f14dd8724",
    "metadata": {},
    "outputs": [],
    "source": [
     "import os\n",
+    "\n",
     "def write2txt_file(bitstream, filename):\n",
-    "    \"\"\"Writes a bitstream (string of '0's and '1's) to a text file.\"\"\"\n",
+    "    \"\"\"\n",
+    "    Writes a bitstream (string of '0's and '1's) to a text file.\n",
+    "\n",
+    "    This function opens a text file in append mode and writes the provided bitstream to it.\n",
+    "    \n",
+    "    Args:\n",
+    "        bitstream (str): A string of '0's and '1's representing the bitstream to be written.\n",
+    "        filename (str): The path to the text file where the bitstream will be written.\n",
+    "    \"\"\"\n",
     "    with open(filename, 'a') as f:  # Open in append mode to continue writing\n",
     "        f.write(bitstream)\n",
     "\n",
+    "\n",
     "def write2bin_file(bitstream, filename):\n",
+    "    \"\"\"\n",
+    "    Writes a bitstream (string of '0's and '1's) to a binary file.\n",
+    "\n",
+    "    This function converts the bitstream into bytes, pads it to ensure it's a multiple of 8 bits, \n",
+    "    and then writes it to a binary file in append mode.\n",
+    "    \n",
+    "    Args:\n",
+    "        bitstream (str): A string of '0's and '1's representing the bitstream to be written.\n",
+    "        filename (str): The path to the binary file where the bitstream will be written.\n",
+    "    \"\"\"\n",
     "    byte_list = []\n",
     "    \n",
     "    # Pad the bitstream if it's not a multiple of 8\n",
@@ -136,44 +275,57 @@
     "    with open(filename, 'ab') as f:  # 'ab' mode to append to the binary file\n",
     "        f.write(bytearray(byte_list))\n",
     "\n",
-    "def gen_bit_stream(data:dict,target_size,file_path):\n",
-    "    lfsrs = [LFSR(start=i[\"start\"],poly=i[\"poly\"]) for i in data]\n",
-    "    a51 = A51(lfsrs=lfsrs,clock_bits=[i[\"clock\"] for i in data])\n",
-    "    \n",
-    "    # filename = 'bitstream_output_1GB.bin'\n",
-    "    # target_size = 1 * 1024 * 1024 * 1024  # 1 GB in bytes\n",
-    "    current_size = 0\n",
     "\n",
+    "def gen_bit_stream(data: dict, target_size: int, file_path: str):\n",
+    "    \"\"\"\n",
+    "    Generates a keystream using the A51 cipher and writes it to a file.\n",
+    "\n",
+    "    This function initializes the LFSRs based on the provided data, generates a keystream \n",
+    "    using the A51 cipher, and writes the generated bits to a text file or binary file \n",
+    "    in chunks. It keeps track of the current size of the output file and prints progress \n",
+    "    at each 10% interval.\n",
+    "\n",
+    "    Args:\n",
+    "        data (dict): A dictionary containing information about the LFSRs, including their \n",
+    "                     start values, polynomials, and clock positions.\n",
+    "        target_size (int): The target size of the file in bytes. The function will stop once \n",
+    "                            this size is reached.\n",
+    "        file_path (str): The path to the output file where the generated bitstream will be written.\n",
+    "    \"\"\"\n",
+    "    # Initialize the LFSRs and A51 cipher\n",
+    "    lfsrs = [LFSR(start=i[\"start\"], poly=i[\"poly\"]) for i in data]\n",
+    "    a51 = A51(lfsrs=lfsrs, clock_bits=[i[\"clock\"] for i in data])\n",
+    "    \n",
+    "    current_size = 0\n",
     "    bitstream_chunk = \"\"  # Chunk of bits to write periodically\n",
     "    chunk_size = 10000  # Number of bits to generate at a time (can adjust for performance)\n",
     "    progress_interval = target_size // 10  # 1/10th of the target size (100 MB)\n",
     "    next_progress_checkpoint = progress_interval\n",
     "    \n",
+    "    # Generate bits until the target file size is reached\n",
     "    while current_size < target_size:\n",
     "        # Generate bits in chunks\n",
     "        for _ in range(chunk_size):\n",
     "            bitstream_chunk += str(a51.clock())\n",
     "\n",
-    "        # Write chunk to file\n",
-    "        # write2bin_file(bitstream_chunk, filename)\n",
+    "        # Write the chunk to file\n",
     "        write2txt_file(bitstream_chunk, file_path)\n",
     "        \n",
     "        # Clear the chunk and update the current file size\n",
     "        bitstream_chunk = \"\"\n",
     "        current_size = os.path.getsize(file_path)\n",
+    "        \n",
     "        # Check if the file size has crossed the 1/10th checkpoint\n",
     "        if current_size >= next_progress_checkpoint:\n",
-    "            print(f\"File size crossed {round(next_progress_checkpoint / (1024 * 1024),2)} MB\")\n",
+    "            print(f\"File size crossed {round(next_progress_checkpoint / (1024 * 1024), 2)} MB\")\n",
     "            next_progress_checkpoint += progress_interval  # Update to next 10% checkpoint\n",
     "\n",
-    "       \n",
-    "\n",
-    "    print(f\"File generation complete: {file_path} (target)\")"
+    "    print(f\"File generation complete: {file_path} (target)\")\n"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 4,
+   "execution_count": 7,
    "id": "ebf2b473-4277-4b99-9935-96802dc52488",
    "metadata": {},
    "outputs": [
@@ -182,15 +334,6 @@
      "output_type": "stream",
      "text": [
       "File size crossed 0.1 MB\n",
-      "File size crossed 0.2 MB\n",
-      "File size crossed 0.3 MB\n",
-      "File size crossed 0.4 MB\n",
-      "File size crossed 0.5 MB\n",
-      "File size crossed 0.6 MB\n",
-      "File size crossed 0.7 MB\n",
-      "File size crossed 0.8 MB\n",
-      "File size crossed 0.9 MB\n",
-      "File size crossed 1.0 MB\n",
       "File generation complete: mine_gen_100MB.txt (target)\n"
      ]
     }
diff --git a/cryptography/playfire.ipynb b/cryptography/playfire.ipynb
index 5814f34fe..c7f9ad0b8 100644
--- a/cryptography/playfire.ipynb
+++ b/cryptography/playfire.ipynb
@@ -26,92 +26,163 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 4,
+   "execution_count": 10,
    "id": "b73906e7",
    "metadata": {},
    "outputs": [],
    "source": [
     "class PlayFire:\n",
-    "    def __init__(self,key,extra='x'):\n",
+    "    \"\"\"\n",
+    "    PlayFire class implements the Playfair cipher for encryption and decryption of messages.\n",
+    "\n",
+    "    The Playfair cipher is a digraph substitution cipher that encrypts pairs of letters. It requires a key, which \n",
+    "    is used to create a 6x6 matrix of letters and digits, and processes the message in pairs.\n",
+    "\n",
+    "    Attributes:\n",
+    "    key (str): The key used to generate the matrix.\n",
+    "    key_matrix (list): The 6x6 matrix used for encryption and decryption.\n",
+    "    extra (str): The extra character used to pad the message if the length is odd (default is 'x').\n",
+    "\n",
+    "    Methods:\n",
+    "    __verify_key(key): Verifies that the key is valid (contains unique characters).\n",
+    "    __make_matrix(): Creates a 6x6 matrix using the key and the remaining letters/digits.\n",
+    "    find_idx(pair): Finds the positions (row and column indices) of the pair of characters in the matrix.\n",
+    "    encrypt(msg): Encrypts the given message using the Playfair cipher.\n",
+    "    decrypt(msg): Decrypts the given encrypted message using the Playfair cipher.\n",
+    "    \"\"\"\n",
+    "\n",
+    "    def __init__(self, key, extra='x'):\n",
+    "        \"\"\"\n",
+    "        Initializes the PlayFire cipher with a key and an optional extra character for padding.\n",
+    "\n",
+    "        Parameters:\n",
+    "        key (str): The key to generate the cipher matrix.\n",
+    "        extra (str, optional): The character used for padding the message if its length is odd. Defaults to 'x'.\n",
+    "        \"\"\"\n",
     "        self.key = self.__verify_key(key)\n",
     "        self.key_matrix = self.__make_matrix()\n",
     "        self.extra = extra\n",
-    "    def __verify_key(self,key):\n",
+    "\n",
+    "    def __verify_key(self, key):\n",
+    "        \"\"\"\n",
+    "        Verifies that the provided key contains unique characters.\n",
+    "\n",
+    "        Parameters:\n",
+    "        key (str): The key to verify.\n",
+    "\n",
+    "        Returns:\n",
+    "        str: The valid key if it contains only unique characters, else prints an error.\n",
+    "        \"\"\"\n",
     "        keyy = []\n",
     "        for i in key:\n",
     "            if(i not in keyy):\n",
     "                keyy.append(i)\n",
-    "        if(len(set(key))==len(key)):\n",
+    "        if(len(set(key)) == len(key)):\n",
     "            return key\n",
     "        else:\n",
     "            print(\"key Error\")\n",
+    "\n",
     "    def __make_matrix(self):\n",
+    "        \"\"\"\n",
+    "        Creates a 6x6 matrix from the key by filling in remaining characters of the alphabet and digits.\n",
+    "\n",
+    "        Returns:\n",
+    "        list: A 6x6 matrix for encryption and decryption.\n",
+    "        \"\"\"\n",
     "        alphanum = list(\"abcdefghijklmnopqrstuvwxyz0123456789\")\n",
     "        key = list(self.key)\n",
-    "        xx = key+[i for i in alphanum if i not in key]\n",
+    "        xx = key + [i for i in alphanum if i not in key]\n",
     "        mtrx = []\n",
     "        idx = 0\n",
     "        for i in range(6):\n",
-    "            t1 = xx[idx:idx+6]\n",
+    "            t1 = xx[idx:idx + 6]\n",
     "            mtrx.append(t1)\n",
-    "            idx = idx+6\n",
+    "            idx = idx + 6\n",
     "        return mtrx\n",
-    "    def find_idx(self,pair):\n",
-    "            idxs = [6,6]\n",
-    "            for i in range(6):\n",
-    "                for j in range(6):\n",
-    "                    if(i == 5):\n",
-    "                        i = -1\n",
-    "                    if(j == 5):\n",
-    "                        j = -1\n",
-    "                    if(pair[0]==self.key_matrix[i][j]):\n",
-    "                        idxs[0] = [i,j]\n",
-    "                    if(pair[1]==self.key_matrix[i][j]):\n",
-    "                        idxs[1] = [i,j]\n",
-    "            return idxs\n",
-    "    def encrypt(self,msg:str):\n",
+    "\n",
+    "    def find_idx(self, pair):\n",
+    "        \"\"\"\n",
+    "        Finds the row and column indices of the characters in the matrix.\n",
+    "\n",
+    "        Parameters:\n",
+    "        pair (list): A pair of characters whose positions are to be found in the matrix.\n",
+    "\n",
+    "        Returns:\n",
+    "        list: A list containing the row and column indices of both characters in the matrix.\n",
+    "        \"\"\"\n",
+    "        idxs = [6, 6]\n",
+    "        for i in range(6):\n",
+    "            for j in range(6):\n",
+    "                if(i == 5):\n",
+    "                    i = -1\n",
+    "                if(j == 5):\n",
+    "                    j = -1\n",
+    "                if(pair[0] == self.key_matrix[i][j]):\n",
+    "                    idxs[0] = [i, j]\n",
+    "                if(pair[1] == self.key_matrix[i][j]):\n",
+    "                    idxs[1] = [i, j]\n",
+    "        return idxs\n",
+    "\n",
+    "    def encrypt(self, msg: str):\n",
+    "        \"\"\"\n",
+    "        Encrypts the given message using the Playfair cipher.\n",
+    "\n",
+    "        Parameters:\n",
+    "        msg (str): The plaintext message to encrypt.\n",
+    "\n",
+    "        Returns:\n",
+    "        str: The encrypted message.\n",
+    "        \"\"\"\n",
     "        msg = list(msg.lower())\n",
-    "        if(len(msg)%2==1):\n",
+    "        if(len(msg) % 2 == 1):\n",
     "            msg.append(self.extra)\n",
     "        pairs = []\n",
-    "        for i in range(0,len(msg),2):\n",
-    "            pairs.append(msg[i:i+2])\n",
-    "        en_msg=\"\"\n",
+    "        for i in range(0, len(msg), 2):\n",
+    "            pairs.append(msg[i:i + 2])\n",
+    "        en_msg = \"\"\n",
     "        for i in pairs:\n",
     "            idxs = self.find_idx(i)\n",
-    "            if(idxs[0][0]==idxs[1][0]):\n",
-    "                en_m = self.key_matrix[idxs[0][0]][idxs[0][1]+1]+self.key_matrix[idxs[0][0]][idxs[1][1]+1]\n",
-    "            elif(idxs[0][1]==idxs[1][1]):\n",
-    "                \n",
-    "                en_m = self.key_matrix[idxs[0][0]+1][idxs[0][1]]+self.key_matrix[idxs[1][0]+1][idxs[1][1]]\n",
+    "            if(idxs[0][0] == idxs[1][0]):\n",
+    "                en_m = self.key_matrix[idxs[0][0]][idxs[0][1] + 1] + self.key_matrix[idxs[0][0]][idxs[1][1] + 1]\n",
+    "            elif(idxs[0][1] == idxs[1][1]):\n",
+    "                en_m = self.key_matrix[idxs[0][0] + 1][idxs[0][1]] + self.key_matrix[idxs[1][0] + 1][idxs[1][1]]\n",
     "            else:\n",
-    "                en_m = self.key_matrix[idxs[0][0]][idxs[1][1]]+self.key_matrix[idxs[1][0]][idxs[0][1]]\n",
+    "                en_m = self.key_matrix[idxs[0][0]][idxs[1][1]] + self.key_matrix[idxs[1][0]][idxs[0][1]]\n",
     "            en_msg += en_m\n",
     "        return en_msg\n",
-    "    \n",
-    "    def decrypt(self,msg):\n",
+    "\n",
+    "    def decrypt(self, msg):\n",
+    "        \"\"\"\n",
+    "        Decrypts the given encrypted message using the Playfair cipher.\n",
+    "\n",
+    "        Parameters:\n",
+    "        msg (str): The encrypted message to decrypt.\n",
+    "\n",
+    "        Returns:\n",
+    "        str: The decrypted plaintext message.\n",
+    "        \"\"\"\n",
     "        msg = list(msg.lower())\n",
-    "        if(len(msg)%2==1):\n",
+    "        if(len(msg) % 2 == 1):\n",
     "            msg.append(self.extra)\n",
     "        pairs = []\n",
-    "        for i in range(0,len(msg),2):\n",
-    "            pairs.append(msg[i:i+2])\n",
-    "        en_msg=\"\"\n",
+    "        for i in range(0, len(msg), 2):\n",
+    "            pairs.append(msg[i:i + 2])\n",
+    "        en_msg = \"\"\n",
     "        for i in pairs:\n",
     "            idxs = self.find_idx(i)\n",
-    "            if(idxs[0][0]==idxs[1][0]):\n",
-    "                en_m = self.key_matrix[idxs[0][0]][idxs[0][1]-1]+self.key_matrix[idxs[0][0]][idxs[1][1]-1]\n",
-    "            elif(idxs[0][1]==idxs[1][1]):\n",
-    "                en_m = self.key_matrix[idxs[0][0]-1][idxs[0][1]]+self.key_matrix[idxs[1][0]-1][idxs[1][1]]\n",
+    "            if(idxs[0][0] == idxs[1][0]):\n",
+    "                en_m = self.key_matrix[idxs[0][0]][idxs[0][1] - 1] + self.key_matrix[idxs[0][0]][idxs[1][1] - 1]\n",
+    "            elif(idxs[0][1] == idxs[1][1]):\n",
+    "                en_m = self.key_matrix[idxs[0][0] - 1][idxs[0][1]] + self.key_matrix[idxs[1][0] - 1][idxs[1][1]]\n",
     "            else:\n",
-    "                en_m = self.key_matrix[idxs[0][0]][idxs[1][1]]+self.key_matrix[idxs[1][0]][idxs[0][1]]\n",
+    "                en_m = self.key_matrix[idxs[0][0]][idxs[1][1]] + self.key_matrix[idxs[1][0]][idxs[0][1]]\n",
     "            en_msg += en_m\n",
-    "        return en_msg"
+    "        return en_msg\n"
    ]
   },
   {
    "cell_type": "code",
-   "execution_count": 5,
+   "execution_count": 11,
    "id": "4b861600",
    "metadata": {},
    "outputs": [
@@ -126,7 +197,7 @@
        " ['4', '5', '6', '7', '8', '9']]"
       ]
      },
-     "execution_count": 5,
+     "execution_count": 11,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -138,7 +209,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 6,
+   "execution_count": 12,
    "id": "7c4e1caa",
    "metadata": {},
    "outputs": [
@@ -148,7 +219,7 @@
        "'ydppny3b7u'"
       ]
      },
-     "execution_count": 6,
+     "execution_count": 12,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -161,7 +232,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 7,
+   "execution_count": 13,
    "id": "48c8a847",
    "metadata": {},
    "outputs": [
@@ -171,7 +242,7 @@
        "'hello1234x'"
       ]
      },
-     "execution_count": 7,
+     "execution_count": 13,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -182,7 +253,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 8,
+   "execution_count": 14,
    "id": "62806ee1",
    "metadata": {},
    "outputs": [
@@ -192,7 +263,7 @@
        "'thismy1stdayofcollegeilearntabouteverythingandmetmyfriends'"
       ]
      },
-     "execution_count": 8,
+     "execution_count": 14,
      "metadata": {},
      "output_type": "execute_result"
     }
@@ -203,7 +274,7 @@
   },
   {
    "cell_type": "code",
-   "execution_count": 9,
+   "execution_count": 15,
    "id": "a7a9907b",
    "metadata": {},
    "outputs": [
@@ -213,7 +284,7 @@
        "'rx'"
       ]
      },
-     "execution_count": 9,
+     "execution_count": 15,
      "metadata": {},
      "output_type": "execute_result"
     }