From d5963b2da7fff2b1883d8868d61127b62bac165e Mon Sep 17 00:00:00 2001 From: "pre-commit-ci[bot]" <66853113+pre-commit-ci[bot]@users.noreply.github.com> Date: Wed, 23 Oct 2024 15:34:22 +0000 Subject: [PATCH] [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --- machine_learning/ridge_regression/model.py | 18 +++++++++--------- 1 file changed, 9 insertions(+), 9 deletions(-) diff --git a/machine_learning/ridge_regression/model.py b/machine_learning/ridge_regression/model.py index 6a1470c5c..b0908f9ef 100644 --- a/machine_learning/ridge_regression/model.py +++ b/machine_learning/ridge_regression/model.py @@ -3,11 +3,12 @@ import pandas as pd class RidgeRegression: - def __init__(self, - alpha: float = 0.001, - regularization_param: float = 0.1, - num_iterations: int = 1000, - ) -> None: + def __init__( + self, + alpha: float = 0.001, + regularization_param: float = 0.1, + num_iterations: int = 1000, + ) -> None: self.alpha: float = alpha self.regularization_param: float = regularization_param self.num_iterations: int = num_iterations @@ -49,10 +50,9 @@ class RidgeRegression: m = len(y) predictions = x_scaled.dot(self.theta) - cost = ( - 1 / (2 * m)) * np.sum((predictions - y) ** 2) + ( - self.regularization_param / (2 * m) - ) * np.sum(self.theta**2) + cost = (1 / (2 * m)) * np.sum((predictions - y) ** 2) + ( + self.regularization_param / (2 * m) + ) * np.sum(self.theta**2) return cost def mean_absolute_error(self, y_true: np.ndarray, y_pred: np.ndarray) -> float: