mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-24 05:21:09 +00:00
Merge branch 'master' of git://github.com/Satyam-Bhalla/Python into Satyam-Bhalla-master
This commit is contained in:
commit
d8e33020b4
File diff suppressed because one or more lines are too long
|
@ -0,0 +1,401 @@
|
||||||
|
User ID,Gender,Age,EstimatedSalary,Purchased
|
||||||
|
15624510,Male,19,19000,0
|
||||||
|
15810944,Male,35,20000,0
|
||||||
|
15668575,Female,26,43000,0
|
||||||
|
15603246,Female,27,57000,0
|
||||||
|
15804002,Male,19,76000,0
|
||||||
|
15728773,Male,27,58000,0
|
||||||
|
15598044,Female,27,84000,0
|
||||||
|
15694829,Female,32,150000,1
|
||||||
|
15600575,Male,25,33000,0
|
||||||
|
15727311,Female,35,65000,0
|
||||||
|
15570769,Female,26,80000,0
|
||||||
|
15606274,Female,26,52000,0
|
||||||
|
15746139,Male,20,86000,0
|
||||||
|
15704987,Male,32,18000,0
|
||||||
|
15628972,Male,18,82000,0
|
||||||
|
15697686,Male,29,80000,0
|
||||||
|
15733883,Male,47,25000,1
|
||||||
|
15617482,Male,45,26000,1
|
||||||
|
15704583,Male,46,28000,1
|
||||||
|
15621083,Female,48,29000,1
|
||||||
|
15649487,Male,45,22000,1
|
||||||
|
15736760,Female,47,49000,1
|
||||||
|
15714658,Male,48,41000,1
|
||||||
|
15599081,Female,45,22000,1
|
||||||
|
15705113,Male,46,23000,1
|
||||||
|
15631159,Male,47,20000,1
|
||||||
|
15792818,Male,49,28000,1
|
||||||
|
15633531,Female,47,30000,1
|
||||||
|
15744529,Male,29,43000,0
|
||||||
|
15669656,Male,31,18000,0
|
||||||
|
15581198,Male,31,74000,0
|
||||||
|
15729054,Female,27,137000,1
|
||||||
|
15573452,Female,21,16000,0
|
||||||
|
15776733,Female,28,44000,0
|
||||||
|
15724858,Male,27,90000,0
|
||||||
|
15713144,Male,35,27000,0
|
||||||
|
15690188,Female,33,28000,0
|
||||||
|
15689425,Male,30,49000,0
|
||||||
|
15671766,Female,26,72000,0
|
||||||
|
15782806,Female,27,31000,0
|
||||||
|
15764419,Female,27,17000,0
|
||||||
|
15591915,Female,33,51000,0
|
||||||
|
15772798,Male,35,108000,0
|
||||||
|
15792008,Male,30,15000,0
|
||||||
|
15715541,Female,28,84000,0
|
||||||
|
15639277,Male,23,20000,0
|
||||||
|
15798850,Male,25,79000,0
|
||||||
|
15776348,Female,27,54000,0
|
||||||
|
15727696,Male,30,135000,1
|
||||||
|
15793813,Female,31,89000,0
|
||||||
|
15694395,Female,24,32000,0
|
||||||
|
15764195,Female,18,44000,0
|
||||||
|
15744919,Female,29,83000,0
|
||||||
|
15671655,Female,35,23000,0
|
||||||
|
15654901,Female,27,58000,0
|
||||||
|
15649136,Female,24,55000,0
|
||||||
|
15775562,Female,23,48000,0
|
||||||
|
15807481,Male,28,79000,0
|
||||||
|
15642885,Male,22,18000,0
|
||||||
|
15789109,Female,32,117000,0
|
||||||
|
15814004,Male,27,20000,0
|
||||||
|
15673619,Male,25,87000,0
|
||||||
|
15595135,Female,23,66000,0
|
||||||
|
15583681,Male,32,120000,1
|
||||||
|
15605000,Female,59,83000,0
|
||||||
|
15718071,Male,24,58000,0
|
||||||
|
15679760,Male,24,19000,0
|
||||||
|
15654574,Female,23,82000,0
|
||||||
|
15577178,Female,22,63000,0
|
||||||
|
15595324,Female,31,68000,0
|
||||||
|
15756932,Male,25,80000,0
|
||||||
|
15726358,Female,24,27000,0
|
||||||
|
15595228,Female,20,23000,0
|
||||||
|
15782530,Female,33,113000,0
|
||||||
|
15592877,Male,32,18000,0
|
||||||
|
15651983,Male,34,112000,1
|
||||||
|
15746737,Male,18,52000,0
|
||||||
|
15774179,Female,22,27000,0
|
||||||
|
15667265,Female,28,87000,0
|
||||||
|
15655123,Female,26,17000,0
|
||||||
|
15595917,Male,30,80000,0
|
||||||
|
15668385,Male,39,42000,0
|
||||||
|
15709476,Male,20,49000,0
|
||||||
|
15711218,Male,35,88000,0
|
||||||
|
15798659,Female,30,62000,0
|
||||||
|
15663939,Female,31,118000,1
|
||||||
|
15694946,Male,24,55000,0
|
||||||
|
15631912,Female,28,85000,0
|
||||||
|
15768816,Male,26,81000,0
|
||||||
|
15682268,Male,35,50000,0
|
||||||
|
15684801,Male,22,81000,0
|
||||||
|
15636428,Female,30,116000,0
|
||||||
|
15809823,Male,26,15000,0
|
||||||
|
15699284,Female,29,28000,0
|
||||||
|
15786993,Female,29,83000,0
|
||||||
|
15709441,Female,35,44000,0
|
||||||
|
15710257,Female,35,25000,0
|
||||||
|
15582492,Male,28,123000,1
|
||||||
|
15575694,Male,35,73000,0
|
||||||
|
15756820,Female,28,37000,0
|
||||||
|
15766289,Male,27,88000,0
|
||||||
|
15593014,Male,28,59000,0
|
||||||
|
15584545,Female,32,86000,0
|
||||||
|
15675949,Female,33,149000,1
|
||||||
|
15672091,Female,19,21000,0
|
||||||
|
15801658,Male,21,72000,0
|
||||||
|
15706185,Female,26,35000,0
|
||||||
|
15789863,Male,27,89000,0
|
||||||
|
15720943,Male,26,86000,0
|
||||||
|
15697997,Female,38,80000,0
|
||||||
|
15665416,Female,39,71000,0
|
||||||
|
15660200,Female,37,71000,0
|
||||||
|
15619653,Male,38,61000,0
|
||||||
|
15773447,Male,37,55000,0
|
||||||
|
15739160,Male,42,80000,0
|
||||||
|
15689237,Male,40,57000,0
|
||||||
|
15679297,Male,35,75000,0
|
||||||
|
15591433,Male,36,52000,0
|
||||||
|
15642725,Male,40,59000,0
|
||||||
|
15701962,Male,41,59000,0
|
||||||
|
15811613,Female,36,75000,0
|
||||||
|
15741049,Male,37,72000,0
|
||||||
|
15724423,Female,40,75000,0
|
||||||
|
15574305,Male,35,53000,0
|
||||||
|
15678168,Female,41,51000,0
|
||||||
|
15697020,Female,39,61000,0
|
||||||
|
15610801,Male,42,65000,0
|
||||||
|
15745232,Male,26,32000,0
|
||||||
|
15722758,Male,30,17000,0
|
||||||
|
15792102,Female,26,84000,0
|
||||||
|
15675185,Male,31,58000,0
|
||||||
|
15801247,Male,33,31000,0
|
||||||
|
15725660,Male,30,87000,0
|
||||||
|
15638963,Female,21,68000,0
|
||||||
|
15800061,Female,28,55000,0
|
||||||
|
15578006,Male,23,63000,0
|
||||||
|
15668504,Female,20,82000,0
|
||||||
|
15687491,Male,30,107000,1
|
||||||
|
15610403,Female,28,59000,0
|
||||||
|
15741094,Male,19,25000,0
|
||||||
|
15807909,Male,19,85000,0
|
||||||
|
15666141,Female,18,68000,0
|
||||||
|
15617134,Male,35,59000,0
|
||||||
|
15783029,Male,30,89000,0
|
||||||
|
15622833,Female,34,25000,0
|
||||||
|
15746422,Female,24,89000,0
|
||||||
|
15750839,Female,27,96000,1
|
||||||
|
15749130,Female,41,30000,0
|
||||||
|
15779862,Male,29,61000,0
|
||||||
|
15767871,Male,20,74000,0
|
||||||
|
15679651,Female,26,15000,0
|
||||||
|
15576219,Male,41,45000,0
|
||||||
|
15699247,Male,31,76000,0
|
||||||
|
15619087,Female,36,50000,0
|
||||||
|
15605327,Male,40,47000,0
|
||||||
|
15610140,Female,31,15000,0
|
||||||
|
15791174,Male,46,59000,0
|
||||||
|
15602373,Male,29,75000,0
|
||||||
|
15762605,Male,26,30000,0
|
||||||
|
15598840,Female,32,135000,1
|
||||||
|
15744279,Male,32,100000,1
|
||||||
|
15670619,Male,25,90000,0
|
||||||
|
15599533,Female,37,33000,0
|
||||||
|
15757837,Male,35,38000,0
|
||||||
|
15697574,Female,33,69000,0
|
||||||
|
15578738,Female,18,86000,0
|
||||||
|
15762228,Female,22,55000,0
|
||||||
|
15614827,Female,35,71000,0
|
||||||
|
15789815,Male,29,148000,1
|
||||||
|
15579781,Female,29,47000,0
|
||||||
|
15587013,Male,21,88000,0
|
||||||
|
15570932,Male,34,115000,0
|
||||||
|
15794661,Female,26,118000,0
|
||||||
|
15581654,Female,34,43000,0
|
||||||
|
15644296,Female,34,72000,0
|
||||||
|
15614420,Female,23,28000,0
|
||||||
|
15609653,Female,35,47000,0
|
||||||
|
15594577,Male,25,22000,0
|
||||||
|
15584114,Male,24,23000,0
|
||||||
|
15673367,Female,31,34000,0
|
||||||
|
15685576,Male,26,16000,0
|
||||||
|
15774727,Female,31,71000,0
|
||||||
|
15694288,Female,32,117000,1
|
||||||
|
15603319,Male,33,43000,0
|
||||||
|
15759066,Female,33,60000,0
|
||||||
|
15814816,Male,31,66000,0
|
||||||
|
15724402,Female,20,82000,0
|
||||||
|
15571059,Female,33,41000,0
|
||||||
|
15674206,Male,35,72000,0
|
||||||
|
15715160,Male,28,32000,0
|
||||||
|
15730448,Male,24,84000,0
|
||||||
|
15662067,Female,19,26000,0
|
||||||
|
15779581,Male,29,43000,0
|
||||||
|
15662901,Male,19,70000,0
|
||||||
|
15689751,Male,28,89000,0
|
||||||
|
15667742,Male,34,43000,0
|
||||||
|
15738448,Female,30,79000,0
|
||||||
|
15680243,Female,20,36000,0
|
||||||
|
15745083,Male,26,80000,0
|
||||||
|
15708228,Male,35,22000,0
|
||||||
|
15628523,Male,35,39000,0
|
||||||
|
15708196,Male,49,74000,0
|
||||||
|
15735549,Female,39,134000,1
|
||||||
|
15809347,Female,41,71000,0
|
||||||
|
15660866,Female,58,101000,1
|
||||||
|
15766609,Female,47,47000,0
|
||||||
|
15654230,Female,55,130000,1
|
||||||
|
15794566,Female,52,114000,0
|
||||||
|
15800890,Female,40,142000,1
|
||||||
|
15697424,Female,46,22000,0
|
||||||
|
15724536,Female,48,96000,1
|
||||||
|
15735878,Male,52,150000,1
|
||||||
|
15707596,Female,59,42000,0
|
||||||
|
15657163,Male,35,58000,0
|
||||||
|
15622478,Male,47,43000,0
|
||||||
|
15779529,Female,60,108000,1
|
||||||
|
15636023,Male,49,65000,0
|
||||||
|
15582066,Male,40,78000,0
|
||||||
|
15666675,Female,46,96000,0
|
||||||
|
15732987,Male,59,143000,1
|
||||||
|
15789432,Female,41,80000,0
|
||||||
|
15663161,Male,35,91000,1
|
||||||
|
15694879,Male,37,144000,1
|
||||||
|
15593715,Male,60,102000,1
|
||||||
|
15575002,Female,35,60000,0
|
||||||
|
15622171,Male,37,53000,0
|
||||||
|
15795224,Female,36,126000,1
|
||||||
|
15685346,Male,56,133000,1
|
||||||
|
15691808,Female,40,72000,0
|
||||||
|
15721007,Female,42,80000,1
|
||||||
|
15794253,Female,35,147000,1
|
||||||
|
15694453,Male,39,42000,0
|
||||||
|
15813113,Male,40,107000,1
|
||||||
|
15614187,Male,49,86000,1
|
||||||
|
15619407,Female,38,112000,0
|
||||||
|
15646227,Male,46,79000,1
|
||||||
|
15660541,Male,40,57000,0
|
||||||
|
15753874,Female,37,80000,0
|
||||||
|
15617877,Female,46,82000,0
|
||||||
|
15772073,Female,53,143000,1
|
||||||
|
15701537,Male,42,149000,1
|
||||||
|
15736228,Male,38,59000,0
|
||||||
|
15780572,Female,50,88000,1
|
||||||
|
15769596,Female,56,104000,1
|
||||||
|
15586996,Female,41,72000,0
|
||||||
|
15722061,Female,51,146000,1
|
||||||
|
15638003,Female,35,50000,0
|
||||||
|
15775590,Female,57,122000,1
|
||||||
|
15730688,Male,41,52000,0
|
||||||
|
15753102,Female,35,97000,1
|
||||||
|
15810075,Female,44,39000,0
|
||||||
|
15723373,Male,37,52000,0
|
||||||
|
15795298,Female,48,134000,1
|
||||||
|
15584320,Female,37,146000,1
|
||||||
|
15724161,Female,50,44000,0
|
||||||
|
15750056,Female,52,90000,1
|
||||||
|
15609637,Female,41,72000,0
|
||||||
|
15794493,Male,40,57000,0
|
||||||
|
15569641,Female,58,95000,1
|
||||||
|
15815236,Female,45,131000,1
|
||||||
|
15811177,Female,35,77000,0
|
||||||
|
15680587,Male,36,144000,1
|
||||||
|
15672821,Female,55,125000,1
|
||||||
|
15767681,Female,35,72000,0
|
||||||
|
15600379,Male,48,90000,1
|
||||||
|
15801336,Female,42,108000,1
|
||||||
|
15721592,Male,40,75000,0
|
||||||
|
15581282,Male,37,74000,0
|
||||||
|
15746203,Female,47,144000,1
|
||||||
|
15583137,Male,40,61000,0
|
||||||
|
15680752,Female,43,133000,0
|
||||||
|
15688172,Female,59,76000,1
|
||||||
|
15791373,Male,60,42000,1
|
||||||
|
15589449,Male,39,106000,1
|
||||||
|
15692819,Female,57,26000,1
|
||||||
|
15727467,Male,57,74000,1
|
||||||
|
15734312,Male,38,71000,0
|
||||||
|
15764604,Male,49,88000,1
|
||||||
|
15613014,Female,52,38000,1
|
||||||
|
15759684,Female,50,36000,1
|
||||||
|
15609669,Female,59,88000,1
|
||||||
|
15685536,Male,35,61000,0
|
||||||
|
15750447,Male,37,70000,1
|
||||||
|
15663249,Female,52,21000,1
|
||||||
|
15638646,Male,48,141000,0
|
||||||
|
15734161,Female,37,93000,1
|
||||||
|
15631070,Female,37,62000,0
|
||||||
|
15761950,Female,48,138000,1
|
||||||
|
15649668,Male,41,79000,0
|
||||||
|
15713912,Female,37,78000,1
|
||||||
|
15586757,Male,39,134000,1
|
||||||
|
15596522,Male,49,89000,1
|
||||||
|
15625395,Male,55,39000,1
|
||||||
|
15760570,Male,37,77000,0
|
||||||
|
15566689,Female,35,57000,0
|
||||||
|
15725794,Female,36,63000,0
|
||||||
|
15673539,Male,42,73000,1
|
||||||
|
15705298,Female,43,112000,1
|
||||||
|
15675791,Male,45,79000,0
|
||||||
|
15747043,Male,46,117000,1
|
||||||
|
15736397,Female,58,38000,1
|
||||||
|
15678201,Male,48,74000,1
|
||||||
|
15720745,Female,37,137000,1
|
||||||
|
15637593,Male,37,79000,1
|
||||||
|
15598070,Female,40,60000,0
|
||||||
|
15787550,Male,42,54000,0
|
||||||
|
15603942,Female,51,134000,0
|
||||||
|
15733973,Female,47,113000,1
|
||||||
|
15596761,Male,36,125000,1
|
||||||
|
15652400,Female,38,50000,0
|
||||||
|
15717893,Female,42,70000,0
|
||||||
|
15622585,Male,39,96000,1
|
||||||
|
15733964,Female,38,50000,0
|
||||||
|
15753861,Female,49,141000,1
|
||||||
|
15747097,Female,39,79000,0
|
||||||
|
15594762,Female,39,75000,1
|
||||||
|
15667417,Female,54,104000,1
|
||||||
|
15684861,Male,35,55000,0
|
||||||
|
15742204,Male,45,32000,1
|
||||||
|
15623502,Male,36,60000,0
|
||||||
|
15774872,Female,52,138000,1
|
||||||
|
15611191,Female,53,82000,1
|
||||||
|
15674331,Male,41,52000,0
|
||||||
|
15619465,Female,48,30000,1
|
||||||
|
15575247,Female,48,131000,1
|
||||||
|
15695679,Female,41,60000,0
|
||||||
|
15713463,Male,41,72000,0
|
||||||
|
15785170,Female,42,75000,0
|
||||||
|
15796351,Male,36,118000,1
|
||||||
|
15639576,Female,47,107000,1
|
||||||
|
15693264,Male,38,51000,0
|
||||||
|
15589715,Female,48,119000,1
|
||||||
|
15769902,Male,42,65000,0
|
||||||
|
15587177,Male,40,65000,0
|
||||||
|
15814553,Male,57,60000,1
|
||||||
|
15601550,Female,36,54000,0
|
||||||
|
15664907,Male,58,144000,1
|
||||||
|
15612465,Male,35,79000,0
|
||||||
|
15810800,Female,38,55000,0
|
||||||
|
15665760,Male,39,122000,1
|
||||||
|
15588080,Female,53,104000,1
|
||||||
|
15776844,Male,35,75000,0
|
||||||
|
15717560,Female,38,65000,0
|
||||||
|
15629739,Female,47,51000,1
|
||||||
|
15729908,Male,47,105000,1
|
||||||
|
15716781,Female,41,63000,0
|
||||||
|
15646936,Male,53,72000,1
|
||||||
|
15768151,Female,54,108000,1
|
||||||
|
15579212,Male,39,77000,0
|
||||||
|
15721835,Male,38,61000,0
|
||||||
|
15800515,Female,38,113000,1
|
||||||
|
15591279,Male,37,75000,0
|
||||||
|
15587419,Female,42,90000,1
|
||||||
|
15750335,Female,37,57000,0
|
||||||
|
15699619,Male,36,99000,1
|
||||||
|
15606472,Male,60,34000,1
|
||||||
|
15778368,Male,54,70000,1
|
||||||
|
15671387,Female,41,72000,0
|
||||||
|
15573926,Male,40,71000,1
|
||||||
|
15709183,Male,42,54000,0
|
||||||
|
15577514,Male,43,129000,1
|
||||||
|
15778830,Female,53,34000,1
|
||||||
|
15768072,Female,47,50000,1
|
||||||
|
15768293,Female,42,79000,0
|
||||||
|
15654456,Male,42,104000,1
|
||||||
|
15807525,Female,59,29000,1
|
||||||
|
15574372,Female,58,47000,1
|
||||||
|
15671249,Male,46,88000,1
|
||||||
|
15779744,Male,38,71000,0
|
||||||
|
15624755,Female,54,26000,1
|
||||||
|
15611430,Female,60,46000,1
|
||||||
|
15774744,Male,60,83000,1
|
||||||
|
15629885,Female,39,73000,0
|
||||||
|
15708791,Male,59,130000,1
|
||||||
|
15793890,Female,37,80000,0
|
||||||
|
15646091,Female,46,32000,1
|
||||||
|
15596984,Female,46,74000,0
|
||||||
|
15800215,Female,42,53000,0
|
||||||
|
15577806,Male,41,87000,1
|
||||||
|
15749381,Female,58,23000,1
|
||||||
|
15683758,Male,42,64000,0
|
||||||
|
15670615,Male,48,33000,1
|
||||||
|
15715622,Female,44,139000,1
|
||||||
|
15707634,Male,49,28000,1
|
||||||
|
15806901,Female,57,33000,1
|
||||||
|
15775335,Male,56,60000,1
|
||||||
|
15724150,Female,49,39000,1
|
||||||
|
15627220,Male,39,71000,0
|
||||||
|
15672330,Male,47,34000,1
|
||||||
|
15668521,Female,48,35000,1
|
||||||
|
15807837,Male,48,33000,1
|
||||||
|
15592570,Male,47,23000,1
|
||||||
|
15748589,Female,45,45000,1
|
||||||
|
15635893,Male,60,42000,1
|
||||||
|
15757632,Female,39,59000,0
|
||||||
|
15691863,Female,46,41000,1
|
||||||
|
15706071,Male,51,23000,1
|
||||||
|
15654296,Female,50,20000,1
|
||||||
|
15755018,Male,36,33000,0
|
||||||
|
15594041,Female,49,36000,1
|
|
|
@ -0,0 +1,69 @@
|
||||||
|
# Random Forest Classification
|
||||||
|
|
||||||
|
# Importing the libraries
|
||||||
|
import numpy as np
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
# Importing the dataset
|
||||||
|
dataset = pd.read_csv('Social_Network_Ads.csv')
|
||||||
|
X = dataset.iloc[:, [2, 3]].values
|
||||||
|
y = dataset.iloc[:, 4].values
|
||||||
|
|
||||||
|
# Splitting the dataset into the Training set and Test set
|
||||||
|
from sklearn.cross_validation import train_test_split
|
||||||
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25, random_state = 0)
|
||||||
|
|
||||||
|
# Feature Scaling
|
||||||
|
from sklearn.preprocessing import StandardScaler
|
||||||
|
sc = StandardScaler()
|
||||||
|
X_train = sc.fit_transform(X_train)
|
||||||
|
X_test = sc.transform(X_test)
|
||||||
|
|
||||||
|
# Fitting Random Forest Classification to the Training set
|
||||||
|
from sklearn.ensemble import RandomForestClassifier
|
||||||
|
classifier = RandomForestClassifier(n_estimators = 10, criterion = 'entropy', random_state = 0)
|
||||||
|
classifier.fit(X_train, y_train)
|
||||||
|
|
||||||
|
# Predicting the Test set results
|
||||||
|
y_pred = classifier.predict(X_test)
|
||||||
|
|
||||||
|
# Making the Confusion Matrix
|
||||||
|
from sklearn.metrics import confusion_matrix
|
||||||
|
cm = confusion_matrix(y_test, y_pred)
|
||||||
|
|
||||||
|
# Visualising the Training set results
|
||||||
|
from matplotlib.colors import ListedColormap
|
||||||
|
X_set, y_set = X_train, y_train
|
||||||
|
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
|
||||||
|
np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
|
||||||
|
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
|
||||||
|
alpha = 0.75, cmap = ListedColormap(('red', 'green')))
|
||||||
|
plt.xlim(X1.min(), X1.max())
|
||||||
|
plt.ylim(X2.min(), X2.max())
|
||||||
|
for i, j in enumerate(np.unique(y_set)):
|
||||||
|
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
|
||||||
|
c = ListedColormap(('red', 'green'))(i), label = j)
|
||||||
|
plt.title('Random Forest Classification (Training set)')
|
||||||
|
plt.xlabel('Age')
|
||||||
|
plt.ylabel('Estimated Salary')
|
||||||
|
plt.legend()
|
||||||
|
plt.show()
|
||||||
|
|
||||||
|
# Visualising the Test set results
|
||||||
|
from matplotlib.colors import ListedColormap
|
||||||
|
X_set, y_set = X_test, y_test
|
||||||
|
X1, X2 = np.meshgrid(np.arange(start = X_set[:, 0].min() - 1, stop = X_set[:, 0].max() + 1, step = 0.01),
|
||||||
|
np.arange(start = X_set[:, 1].min() - 1, stop = X_set[:, 1].max() + 1, step = 0.01))
|
||||||
|
plt.contourf(X1, X2, classifier.predict(np.array([X1.ravel(), X2.ravel()]).T).reshape(X1.shape),
|
||||||
|
alpha = 0.75, cmap = ListedColormap(('red', 'green')))
|
||||||
|
plt.xlim(X1.min(), X1.max())
|
||||||
|
plt.ylim(X2.min(), X2.max())
|
||||||
|
for i, j in enumerate(np.unique(y_set)):
|
||||||
|
plt.scatter(X_set[y_set == j, 0], X_set[y_set == j, 1],
|
||||||
|
c = ListedColormap(('red', 'green'))(i), label = j)
|
||||||
|
plt.title('Random Forest Classification (Test set)')
|
||||||
|
plt.xlabel('Age')
|
||||||
|
plt.ylabel('Estimated Salary')
|
||||||
|
plt.legend()
|
||||||
|
plt.show()
|
|
@ -0,0 +1,11 @@
|
||||||
|
Position,Level,Salary
|
||||||
|
Business Analyst,1,45000
|
||||||
|
Junior Consultant,2,50000
|
||||||
|
Senior Consultant,3,60000
|
||||||
|
Manager,4,80000
|
||||||
|
Country Manager,5,110000
|
||||||
|
Region Manager,6,150000
|
||||||
|
Partner,7,200000
|
||||||
|
Senior Partner,8,300000
|
||||||
|
C-level,9,500000
|
||||||
|
CEO,10,1000000
|
|
File diff suppressed because one or more lines are too long
|
@ -0,0 +1,41 @@
|
||||||
|
# Random Forest Regression
|
||||||
|
|
||||||
|
# Importing the libraries
|
||||||
|
import numpy as np
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
import pandas as pd
|
||||||
|
|
||||||
|
# Importing the dataset
|
||||||
|
dataset = pd.read_csv('Position_Salaries.csv')
|
||||||
|
X = dataset.iloc[:, 1:2].values
|
||||||
|
y = dataset.iloc[:, 2].values
|
||||||
|
|
||||||
|
# Splitting the dataset into the Training set and Test set
|
||||||
|
"""from sklearn.cross_validation import train_test_split
|
||||||
|
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.2, random_state = 0)"""
|
||||||
|
|
||||||
|
# Feature Scaling
|
||||||
|
"""from sklearn.preprocessing import StandardScaler
|
||||||
|
sc_X = StandardScaler()
|
||||||
|
X_train = sc_X.fit_transform(X_train)
|
||||||
|
X_test = sc_X.transform(X_test)
|
||||||
|
sc_y = StandardScaler()
|
||||||
|
y_train = sc_y.fit_transform(y_train)"""
|
||||||
|
|
||||||
|
# Fitting Random Forest Regression to the dataset
|
||||||
|
from sklearn.ensemble import RandomForestRegressor
|
||||||
|
regressor = RandomForestRegressor(n_estimators = 10, random_state = 0)
|
||||||
|
regressor.fit(X, y)
|
||||||
|
|
||||||
|
# Predicting a new result
|
||||||
|
y_pred = regressor.predict(6.5)
|
||||||
|
|
||||||
|
# Visualising the Random Forest Regression results (higher resolution)
|
||||||
|
X_grid = np.arange(min(X), max(X), 0.01)
|
||||||
|
X_grid = X_grid.reshape((len(X_grid), 1))
|
||||||
|
plt.scatter(X, y, color = 'red')
|
||||||
|
plt.plot(X_grid, regressor.predict(X_grid), color = 'blue')
|
||||||
|
plt.title('Truth or Bluff (Random Forest Regression)')
|
||||||
|
plt.xlabel('Position level')
|
||||||
|
plt.ylabel('Salary')
|
||||||
|
plt.show()
|
Loading…
Reference in New Issue
Block a user