diff --git a/project_euler/problem_345/__init__.py b/project_euler/problem_345/__init__.py new file mode 100644 index 000000000..e69de29bb diff --git a/project_euler/problem_345/sol1.py b/project_euler/problem_345/sol1.py new file mode 100644 index 000000000..4234458c5 --- /dev/null +++ b/project_euler/problem_345/sol1.py @@ -0,0 +1,117 @@ +""" +Project Euler Problem 345: https://projecteuler.net/problem=345 + +Matrix Sum + +We define the Matrix Sum of a matrix as the maximum possible sum of +matrix elements such that none of the selected elements share the same row or column. + +For example, the Matrix Sum of the matrix below equals +3315 ( = 863 + 383 + 343 + 959 + 767): + 7 53 183 439 863 + 497 383 563 79 973 + 287 63 343 169 583 + 627 343 773 959 943 + 767 473 103 699 303 + +Find the Matrix Sum of: + 7 53 183 439 863 497 383 563 79 973 287 63 343 169 583 + 627 343 773 959 943 767 473 103 699 303 957 703 583 639 913 + 447 283 463 29 23 487 463 993 119 883 327 493 423 159 743 + 217 623 3 399 853 407 103 983 89 463 290 516 212 462 350 + 960 376 682 962 300 780 486 502 912 800 250 346 172 812 350 + 870 456 192 162 593 473 915 45 989 873 823 965 425 329 803 + 973 965 905 919 133 673 665 235 509 613 673 815 165 992 326 + 322 148 972 962 286 255 941 541 265 323 925 281 601 95 973 + 445 721 11 525 473 65 511 164 138 672 18 428 154 448 848 + 414 456 310 312 798 104 566 520 302 248 694 976 430 392 198 + 184 829 373 181 631 101 969 613 840 740 778 458 284 760 390 + 821 461 843 513 17 901 711 993 293 157 274 94 192 156 574 + 34 124 4 878 450 476 712 914 838 669 875 299 823 329 699 + 815 559 813 459 522 788 168 586 966 232 308 833 251 631 107 + 813 883 451 509 615 77 281 613 459 205 380 274 302 35 805 + +Brute force solution, with caching intermediate steps to speed up the calculation. +""" + +import numpy as np +from numpy.typing import NDArray + +MATRIX_1 = [ + "7 53 183 439 863", + "497 383 563 79 973", + "287 63 343 169 583", + "627 343 773 959 943", + "767 473 103 699 303", +] + +MATRIX_2 = [ + "7 53 183 439 863 497 383 563 79 973 287 63 343 169 583", + "627 343 773 959 943 767 473 103 699 303 957 703 583 639 913", + "447 283 463 29 23 487 463 993 119 883 327 493 423 159 743", + "217 623 3 399 853 407 103 983 89 463 290 516 212 462 350", + "960 376 682 962 300 780 486 502 912 800 250 346 172 812 350", + "870 456 192 162 593 473 915 45 989 873 823 965 425 329 803", + "973 965 905 919 133 673 665 235 509 613 673 815 165 992 326", + "322 148 972 962 286 255 941 541 265 323 925 281 601 95 973", + "445 721 11 525 473 65 511 164 138 672 18 428 154 448 848", + "414 456 310 312 798 104 566 520 302 248 694 976 430 392 198", + "184 829 373 181 631 101 969 613 840 740 778 458 284 760 390", + "821 461 843 513 17 901 711 993 293 157 274 94 192 156 574", + "34 124 4 878 450 476 712 914 838 669 875 299 823 329 699", + "815 559 813 459 522 788 168 586 966 232 308 833 251 631 107", + "813 883 451 509 615 77 281 613 459 205 380 274 302 35 805", +] + + +def solve(arr: NDArray, row: int, cols: set[int], cache: dict[str, int]) -> int: + """ + Finds the max sum for array `arr` starting with row index `row`, and with columns + included in `cols`. `cache` is used for caching intermediate results. + + >>> solve(arr=np.array([[1, 2], [3, 4]]), row=0, cols={0, 1}, cache={}) + 5 + """ + + cache_id = f"{row}, {sorted(cols)}" + if cache_id in cache: + return cache[cache_id] + + if row == len(arr): + return 0 + + max_sum = 0 + for col in cols: + new_cols = cols - {col} + max_sum = max( + max_sum, + int(arr[row, col]) + + solve(arr=arr, row=row + 1, cols=new_cols, cache=cache), + ) + cache[cache_id] = max_sum + return max_sum + + +def solution(matrix_str: list[str] = MATRIX_2) -> int: + """ + Takes list of strings `matrix_str` to parse the matrix and calculates the max sum. + + >>> solution(["1 2", "3 4"]) + 5 + >>> solution(MATRIX_1) + 3315 + """ + + n = len(matrix_str) + arr = np.empty(shape=(n, n), dtype=int) + for row, matrix_row_str in enumerate(matrix_str): + matrix_row_list_str = matrix_row_str.split() + for col, elem_str in enumerate(matrix_row_list_str): + arr[row, col] = int(elem_str) + + cache: dict[str, int] = {} + return solve(arr=arr, row=0, cols=set(range(n)), cache=cache) + + +if __name__ == "__main__": + print(f"{solution() = }")