diff --git a/Neural_Network/convolution_neural_network.py b/Neural_Network/convolution_neural_network.py new file mode 100644 index 000000000..d8ab0d2e5 --- /dev/null +++ b/Neural_Network/convolution_neural_network.py @@ -0,0 +1,305 @@ +#-*- coding: utf-8 -*- + +''' + - - - - - -- - - - - - - - - - - - - - - - - - - - - - - + Name - - CNN - Convolution Neural Network For Photo Recognizing + Goal - - Recognize Handing Writting Word Photo + Detail:Total 5 layers neural network + * Convolution layer + * Pooling layer + * Input layer layer of BP + * Hiden layer of BP + * Output layer of BP + Author: Stephen Lee + Github: 245885195@qq.com + Date: 2017.9.20 + - - - - - -- - - - - - - - - - - - - - - - - - - - - - - + ''' + +import numpy as np +import matplotlib.pyplot as plt + +class CNN(): + + def __init__(self,conv1_get,size_p1,bp_num1,bp_num2,bp_num3,rate_w=0.2,rate_t=0.2): + ''' + :param conv1_get: [a,c,d],size, number, step of convolution kernel + :param size_p1: pooling size + :param bp_num1: units number of flatten layer + :param bp_num2: units number of hidden layer + :param bp_num3: units number of output layer + :param rate_w: rate of weight learning + :param rate_t: rate of threshold learning + ''' + self.num_bp1 = bp_num1 + self.num_bp2 = bp_num2 + self.num_bp3 = bp_num3 + self.conv1 = conv1_get[:2] + self.step_conv1 = conv1_get[2] + self.size_pooling1 = size_p1 + self.rate_weight = rate_w + self.rate_thre = rate_t + self.w_conv1 = [np.mat(-1*np.random.rand(self.conv1[0],self.conv1[0])+0.5) for i in range(self.conv1[1])] + self.wkj = np.mat(-1 * np.random.rand(self.num_bp3, self.num_bp2) + 0.5) + self.vji = np.mat(-1*np.random.rand(self.num_bp2, self.num_bp1)+0.5) + self.thre_conv1 = -2*np.random.rand(self.conv1[1])+1 + self.thre_bp2 = -2*np.random.rand(self.num_bp2)+1 + self.thre_bp3 = -2*np.random.rand(self.num_bp3)+1 + + + def save_model(self,save_path): + #save model dict with pickle + import pickle + model_dic = {'num_bp1':self.num_bp1, + 'num_bp2':self.num_bp2, + 'num_bp3':self.num_bp3, + 'conv1':self.conv1, + 'step_conv1':self.step_conv1, + 'size_pooling1':self.size_pooling1, + 'rate_weight':self.rate_weight, + 'rate_thre':self.rate_thre, + 'w_conv1':self.w_conv1, + 'wkj':self.wkj, + 'vji':self.vji, + 'thre_conv1':self.thre_conv1, + 'thre_bp2':self.thre_bp2, + 'thre_bp3':self.thre_bp3} + with open(save_path, 'wb') as f: + pickle.dump(model_dic, f) + + print('Model saved: %s'% save_path) + + @classmethod + def ReadModel(cls,model_path): + #read saved model + import pickle + with open(model_path, 'rb') as f: + model_dic = pickle.load(f) + + conv_get= model_dic.get('conv1') + conv_get.append(model_dic.get('step_conv1')) + size_p1 = model_dic.get('size_pooling1') + bp1 = model_dic.get('num_bp1') + bp2 = model_dic.get('num_bp2') + bp3 = model_dic.get('num_bp3') + r_w = model_dic.get('rate_weight') + r_t = model_dic.get('rate_thre') + #create model instance + conv_ins = CNN(conv_get,size_p1,bp1,bp2,bp3,r_w,r_t) + #modify model parameter + conv_ins.w_conv1 = model_dic.get('w_conv1') + conv_ins.wkj = model_dic.get('wkj') + conv_ins.vji = model_dic.get('vji') + conv_ins.thre_conv1 = model_dic.get('thre_conv1') + conv_ins.thre_bp2 = model_dic.get('thre_bp2') + conv_ins.thre_bp3 = model_dic.get('thre_bp3') + return conv_ins + + + def sig(self,x): + return 1 / (1 + np.exp(-1*x)) + + def do_round(self,x): + return round(x, 3) + + def convolute(self,data,convs,w_convs,thre_convs,conv_step): + #convolution process + size_conv = convs[0] + num_conv =convs[1] + size_data = np.shape(data)[0] + #get the data slice of original image data, data_focus + data_focus = [] + for i_focus in range(0, size_data - size_conv + 1, conv_step): + for j_focus in range(0, size_data - size_conv + 1, conv_step): + focus = data[i_focus:i_focus + size_conv, j_focus:j_focus + size_conv] + data_focus.append(focus) + #caculate the feature map of every single kernel, and saved as list of matrix + data_featuremap = [] + Size_FeatureMap = int((size_data - size_conv) / conv_step + 1) + for i_map in range(num_conv): + featuremap = [] + for i_focus in range(len(data_focus)): + net_focus = np.sum(np.multiply(data_focus[i_focus], w_convs[i_map])) - thre_convs[i_map] + featuremap.append(self.sig(net_focus)) + featuremap = np.asmatrix(featuremap).reshape(Size_FeatureMap, Size_FeatureMap) + data_featuremap.append(featuremap) + + #expanding the data slice to One dimenssion + focus1_list = [] + for each_focus in data_focus: + focus1_list.extend(self.Expand_Mat(each_focus)) + focus_list = np.asarray(focus1_list) + return focus_list,data_featuremap + + def pooling(self,featuremaps,size_pooling,type='average_pool'): + #pooling process + size_map = len(featuremaps[0]) + size_pooled = int(size_map/size_pooling) + featuremap_pooled = [] + for i_map in range(len(featuremaps)): + map = featuremaps[i_map] + map_pooled = [] + for i_focus in range(0,size_map,size_pooling): + for j_focus in range(0, size_map, size_pooling): + focus = map[i_focus:i_focus + size_pooling, j_focus:j_focus + size_pooling] + if type == 'average_pool': + #average pooling + map_pooled.append(np.average(focus)) + elif type == 'max_pooling': + #max pooling + map_pooled.append(np.max(focus)) + map_pooled = np.asmatrix(map_pooled).reshape(size_pooled,size_pooled) + featuremap_pooled.append(map_pooled) + return featuremap_pooled + + def _expand(self,datas): + #expanding three dimension data to one dimension list + data_expanded = [] + for i in range(len(datas)): + shapes = np.shape(datas[i]) + data_listed = datas[i].reshape(1,shapes[0]*shapes[1]) + data_listed = data_listed.getA().tolist()[0] + data_expanded.extend(data_listed) + data_expanded = np.asarray(data_expanded) + return data_expanded + + def _expand_mat(self,data_mat): + #expanding matrix to one dimension list + data_mat = np.asarray(data_mat) + shapes = np.shape(data_mat) + data_expanded = data_mat.reshape(1,shapes[0]*shapes[1]) + return data_expanded + + def _calculate_gradient_from_pool(self,out_map,pd_pool,num_map,size_map,size_pooling): + ''' + calcluate the gradient from the data slice of pool layer + pd_pool: list of matrix + out_map: the shape of data slice(size_map*size_map) + return: pd_all: list of matrix, [num, size_map, size_map] + ''' + pd_all = [] + i_pool = 0 + for i_map in range(num_map): + pd_conv1 = np.ones((size_map, size_map)) + for i in range(0, size_map, size_pooling): + for j in range(0, size_map, size_pooling): + pd_conv1[i:i + size_pooling, j:j + size_pooling] = pd_pool[i_pool] + i_pool = i_pool + 1 + pd_conv2 = np.multiply(pd_conv1,np.multiply(out_map[i_map],(1-out_map[i_map]))) + pd_all.append(pd_conv2) + return pd_all + + def trian(self,patterns,datas_train, datas_teach, n_repeat, error_accuracy,draw_e = bool): + #model traning + print('----------------------Start Training-------------------------') + print(' - - Shape: Train_Data ',np.shape(datas_train)) + print(' - - Shape: Teach_Data ',np.shape(datas_teach)) + rp = 0 + all_mse = [] + mse = 10000 + while rp < n_repeat and mse >= error_accuracy: + alle = 0 + print('-------------Learning Time %d--------------'%rp) + for p in range(len(datas_train)): + #print('------------Learning Image: %d--------------'%p) + data_train = np.asmatrix(datas_train[p]) + data_teach = np.asarray(datas_teach[p]) + data_focus1,data_conved1 = self.convolute(data_train,self.conv1,self.w_conv1, + self.thre_conv1,conv_step=self.step_conv1) + data_pooled1 = self.pooling(data_conved1,self.size_pooling1) + shape_featuremap1 = np.shape(data_conved1) + ''' + print(' -----original shape ', np.shape(data_train)) + print(' ---- after convolution ',np.shape(data_conv1)) + print(' -----after pooling ',np.shape(data_pooled1)) + ''' + data_bp_input = self._expand(data_pooled1) + bp_out1 = data_bp_input + + bp_net_j = np.dot(bp_out1,self.vji.T) - self.thre_bp2 + bp_out2 = self.sig(bp_net_j) + bp_net_k = np.dot(bp_out2 ,self.wkj.T) - self.thre_bp3 + bp_out3 = self.sig(bp_net_k) + + #--------------Model Leaning ------------------------ + # calcluate error and gradient--------------- + pd_k_all = np.multiply((data_teach - bp_out3), np.multiply(bp_out3, (1 - bp_out3))) + pd_j_all = np.multiply(np.dot(pd_k_all,self.wkj), np.multiply(bp_out2, (1 - bp_out2))) + pd_i_all = np.dot(pd_j_all,self.vji) + + pd_conv1_pooled = pd_i_all / (self.size_pooling1*self.size_pooling1) + pd_conv1_pooled = pd_conv1_pooled.T.getA().tolist() + pd_conv1_all = self._calculate_gradient_from_pool(data_conved1,pd_conv1_pooled,shape_featuremap1[0], + shape_featuremap1[1],self.size_pooling1) + #weight and threshold learning process--------- + #convolution layer + for k_conv in range(self.conv1[1]): + pd_conv_list = self._expand_mat(pd_conv1_all[k_conv]) + delta_w = self.rate_weight * np.dot(pd_conv_list,data_focus1) + + self.w_conv1[k_conv] = self.w_conv1[k_conv] + delta_w.reshape((self.conv1[0],self.conv1[0])) + + self.thre_conv1[k_conv] = self.thre_conv1[k_conv] - np.sum(pd_conv1_all[k_conv]) * self.rate_thre + #all connected layer + self.wkj = self.wkj + pd_k_all.T * bp_out2 * self.rate_weight + self.vji = self.vji + pd_j_all.T * bp_out1 * self.rate_weight + self.thre_bp3 = self.thre_bp3 - pd_k_all * self.rate_thre + self.thre_bp2 = self.thre_bp2 - pd_j_all * self.rate_thre + # calculate the sum error of all single image + errors = np.sum(abs((data_teach - bp_out3))) + alle = alle + errors + #print(' ----Teach ',data_teach) + #print(' ----BP_output ',bp_out3) + rp = rp + 1 + mse = alle/patterns + all_mse.append(mse) + def draw_error(): + yplot = [error_accuracy for i in range(int(n_repeat * 1.2))] + plt.plot(all_mse, '+-') + plt.plot(yplot, 'r--') + plt.xlabel('Learning Times') + plt.ylabel('All_mse') + plt.grid(True, alpha=0.5) + plt.show() + print('------------------Training Complished---------------------') + print(' - - Training epoch: ', rp, ' - - Mse: %.6f' % mse) + if draw_e: + draw_error() + return mse + + def predict(self,datas_test): + #model predict + produce_out = [] + print('-------------------Start Testing-------------------------') + print(' - - Shape: Test_Data ',np.shape(datas_test)) + for p in range(len(datas_test)): + data_test = np.asmatrix(datas_test[p]) + data_focus1, data_conved1 = self.convolute(data_test, self.conv1, self.w_conv1, + self.thre_conv1, conv_step=self.step_conv1) + data_pooled1 = self.pooling(data_conved1, self.size_pooling1) + data_bp_input = self._expand(data_pooled1) + + bp_out1 = data_bp_input + bp_net_j = bp_out1 * self.vji.T - self.thre_bp2 + bp_out2 = self.sig(bp_net_j) + bp_net_k = bp_out2 * self.wkj.T - self.thre_bp3 + bp_out3 = self.sig(bp_net_k) + produce_out.extend(bp_out3.getA().tolist()) + res = [list(map(self.do_round,each)) for each in produce_out] + return np.asarray(res) + + def convolution(self,data): + #return the data of image after convoluting process so we can check it out + data_test = np.asmatrix(data) + data_focus1, data_conved1 = self.convolute(data_test, self.conv1, self.w_conv1, + self.thre_conv1, conv_step=self.step_conv1) + data_pooled1 = self.pooling(data_conved1, self.size_pooling1) + + return data_conved1,data_pooled1 + + +if __name__ == '__main__': + pass + ''' + I will put the example on other file + ''' \ No newline at end of file diff --git a/Neural_Network/neuralnetwork_bp3.py b/Neural_Network/neuralnetwork_bp3.py index 5c4f879ed..896411a5d 100644 --- a/Neural_Network/neuralnetwork_bp3.py +++ b/Neural_Network/neuralnetwork_bp3.py @@ -9,7 +9,7 @@ BP neural network with three layers import numpy as np import matplotlib.pyplot as plt -class Bpnw(): +class Bpnn(): def __init__(self,n_layer1,n_layer2,n_layer3,rate_w=0.3,rate_t=0.3): ''' @@ -38,7 +38,7 @@ class Bpnw(): def do_round(self,x): return round(x, 3) - def trian(self,patterns,data_train, data_teach, n_repeat, error_accuracy,draw_e = bool): + def trian(self,patterns,data_train, data_teach, n_repeat, error_accuracy, draw_e=False): ''' :param patterns: the number of patterns :param data_train: training data x; numpy.ndarray @@ -49,9 +49,9 @@ class Bpnw(): ''' data_train = np.asarray(data_train) data_teach = np.asarray(data_teach) - print('-------------------Start Training-------------------------') - print(' - - Shape: Train_Data ',np.shape(data_train)) - print(' - - Shape: Teach_Data ',np.shape(data_teach)) + # print('-------------------Start Training-------------------------') + # print(' - - Shape: Train_Data ',np.shape(data_train)) + # print(' - - Shape: Teach_Data ',np.shape(data_teach)) rp = 0 all_mse = [] mse = 10000 @@ -95,9 +95,9 @@ class Bpnw(): plt.ylabel('All_mse') plt.grid(True,alpha = 0.7) plt.show() - print('------------------Training Complished---------------------') - print(' - - Training epoch: ', rp, ' - - Mse: %.6f'%mse) - print(' - - Last Output: ', final_out3) + # print('------------------Training Complished---------------------') + # print(' - - Training epoch: ', rp, ' - - Mse: %.6f'%mse) + # print(' - - Last Output: ', final_out3) if draw_e: draw_error() @@ -108,9 +108,9 @@ class Bpnw(): ''' data_test = np.asarray(data_test) produce_out = [] - print('-------------------Start Testing-------------------------') - print(' - - Shape: Test_Data ',np.shape(data_test)) - print(np.shape(data_test)) + # print('-------------------Start Testing-------------------------') + # print(' - - Shape: Test_Data ',np.shape(data_test)) + # print(np.shape(data_test)) for g in range(np.shape(data_test)[0]): net_i = data_test[g] @@ -127,8 +127,26 @@ class Bpnw(): def main(): - #I will fish the mian function later - pass + #example data + data_x = [[1,2,3,4], + [5,6,7,8], + [2,2,3,4], + [7,7,8,8]] + data_y = [[1,0,0,0], + [0,1,0,0], + [0,0,1,0], + [0,0,0,1]] + + test_x = [[1,2,3,4], + [3,2,3,4]] + + #building network model + model = Bpnn(4,10,4) + #training the model + model.trian(patterns=4,data_train=data_x,data_teach=data_y, + n_repeat=100,error_accuracy=0.1,draw_e=True) + #predicting data + model.predict(test_x) if __name__ == '__main__': main()