mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-30 22:23:42 +00:00
parent
74a7b5f799
commit
dacf1d0375
|
@ -1,25 +1,18 @@
|
|||
# calculate palindromic length from center with incrementing difference
|
||||
def palindromic_length(center, diff, string):
|
||||
if (
|
||||
center - diff == -1
|
||||
or center + diff == len(string)
|
||||
or string[center - diff] != string[center + diff]
|
||||
):
|
||||
return 0
|
||||
return 1 + palindromic_length(center, diff + 1, string)
|
||||
|
||||
|
||||
def palindromic_string(input_string):
|
||||
"""
|
||||
Manacher’s algorithm which finds Longest Palindromic Substring in linear time.
|
||||
>>> palindromic_string('abbbaba')
|
||||
'abbba'
|
||||
>>> palindromic_string('ababa')
|
||||
'ababa'
|
||||
|
||||
Manacher’s algorithm which finds Longest palindromic Substring in linear time.
|
||||
|
||||
1. first this convert input_string("xyx") into new_string("x|y|x") where odd
|
||||
positions are actual input characters.
|
||||
2. for each character in new_string it find corresponding length and store,
|
||||
a. max_length
|
||||
b. max_length's center
|
||||
3. return output_string from center - max_length to center + max_length and remove
|
||||
all "|"
|
||||
2. for each character in new_string it find corresponding length and store the length
|
||||
and l,r to store previously calculated info.(please look the explanation for details)
|
||||
|
||||
3. return corresponding output_string by removing all "|"
|
||||
"""
|
||||
max_length = 0
|
||||
|
||||
|
@ -33,19 +26,38 @@ def palindromic_string(input_string):
|
|||
# append last character
|
||||
new_input_string += input_string[-1]
|
||||
|
||||
# we will store the starting and ending of previous furthest ending palindromic substring
|
||||
l, r = 0, 0
|
||||
|
||||
# length[i] shows the length of palindromic substring with center i
|
||||
length = [1 for i in range(len(new_input_string))]
|
||||
|
||||
# for each character in new_string find corresponding palindromic string
|
||||
for i in range(len(new_input_string)):
|
||||
k = 1 if i > r else min(length[l + r - i] // 2, r - i + 1)
|
||||
while (
|
||||
i - k >= 0
|
||||
and i + k < len(new_input_string)
|
||||
and new_input_string[k + i] == new_input_string[i - k]
|
||||
):
|
||||
k += 1
|
||||
|
||||
# get palindromic length from i-th position
|
||||
length = palindromic_length(i, 1, new_input_string)
|
||||
length[i] = 2 * k - 1
|
||||
|
||||
# does this string is ending after the previously explored end (that is r) ?
|
||||
# if yes the update the new r to the last index of this
|
||||
if i + k - 1 > r:
|
||||
l = i - k + 1
|
||||
r = i + k - 1
|
||||
|
||||
# update max_length and start position
|
||||
if max_length < length:
|
||||
max_length = length
|
||||
if max_length < length[i]:
|
||||
max_length = length[i]
|
||||
start = i
|
||||
|
||||
# create that string
|
||||
for i in new_input_string[start - max_length : start + max_length + 1]:
|
||||
s = new_input_string[start - max_length // 2 : start + max_length // 2 + 1]
|
||||
for i in s:
|
||||
if i != "|":
|
||||
output_string += i
|
||||
|
||||
|
@ -53,5 +65,39 @@ def palindromic_string(input_string):
|
|||
|
||||
|
||||
if __name__ == "__main__":
|
||||
n = input()
|
||||
print(palindromic_string(n))
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
||||
|
||||
"""
|
||||
...a0...a1...a2.....a3......a4...a5...a6....
|
||||
|
||||
consider the string for which we are calculating the longest palindromic substring is shown above where ...
|
||||
are some characters in between and right now we are calculating the length of palindromic substring with
|
||||
center at a5 with following conditions :
|
||||
i) we have stored the length of palindromic substring which has center at a3 (starts at l ends at r) and it
|
||||
is the furthest ending till now, and it has ending after a6
|
||||
ii) a2 and a4 are equally distant from a3 so char(a2) == char(a4)
|
||||
iii) a0 and a6 are equally distant from a3 so char(a0) == char(a6)
|
||||
iv) a1 is corresponding equal character of a5 in palindrome with center a3 (remember that in below derivation of a4==a6)
|
||||
|
||||
now for a5 we will calculate the length of palindromic substring with center as a5 but can we use previously
|
||||
calculated information in some way?
|
||||
Yes, look the above string we know that a5 is inside the palindrome with center a3 and previously we have
|
||||
have calculated that
|
||||
a0==a2 (palindrome of center a1)
|
||||
a2==a4 (palindrome of center a3)
|
||||
a0==a6 (palindrome of center a3)
|
||||
so a4==a6
|
||||
|
||||
so we can say that palindrome at center a5 is at least as long as palindrome at center a1
|
||||
but this only holds if a0 and a6 are inside the limits of palindrome centered at a3 so finally ..
|
||||
|
||||
len_of_palindrome__at(a5) = min(len_of_palindrome_at(a1), r-a5)
|
||||
where a3 lies from l to r and we have to keep updating that
|
||||
|
||||
and if the a5 lies outside of l,r boundary we calculate length of palindrome with bruteforce and update
|
||||
l,r.
|
||||
|
||||
it gives the linear time complexity just like z-function
|
||||
"""
|
||||
|
|
Loading…
Reference in New Issue
Block a user