mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 08:17:01 +00:00
IQR function is added (#8851)
* tanh function been added * tanh function been added * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * tanh function is added * tanh function is added * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * tanh function added * tanh function added * tanh function is added * Apply suggestions from code review * ELU activation function is added * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * elu activation is added * ELU activation is added * Update maths/elu_activation.py Co-authored-by: Christian Clauss <cclauss@me.com> * Exponential_linear_unit activation is added * Exponential_linear_unit activation is added * SiLU activation is added * SiLU activation is added * mish added * mish activation is added * inter_quartile_range function is added * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Mish activation function is added * Mish action is added * mish activation added * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * mish activation added * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * inter quartile range (IQR) function is added * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * IQR function is added * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * code optimized in IQR function * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * interquartile_range function is added * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update maths/interquartile_range.py Co-authored-by: Christian Clauss <cclauss@me.com> * Changes on interquartile_range * numpy removed from interquartile_range * Fixes from code review * Update interquartile_range.py --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Christian Clauss <cclauss@me.com>
This commit is contained in:
parent
ce218c57f1
commit
db6bd4b17f
66
maths/interquartile_range.py
Normal file
66
maths/interquartile_range.py
Normal file
|
@ -0,0 +1,66 @@
|
|||
"""
|
||||
An implementation of interquartile range (IQR) which is a measure of statistical
|
||||
dispersion, which is the spread of the data.
|
||||
|
||||
The function takes the list of numeric values as input and returns the IQR.
|
||||
|
||||
Script inspired by this Wikipedia article:
|
||||
https://en.wikipedia.org/wiki/Interquartile_range
|
||||
"""
|
||||
from __future__ import annotations
|
||||
|
||||
|
||||
def find_median(nums: list[int | float]) -> float:
|
||||
"""
|
||||
This is the implementation of the median.
|
||||
:param nums: The list of numeric nums
|
||||
:return: Median of the list
|
||||
>>> find_median(nums=([1, 2, 2, 3, 4]))
|
||||
2
|
||||
>>> find_median(nums=([1, 2, 2, 3, 4, 4]))
|
||||
2.5
|
||||
>>> find_median(nums=([-1, 2, 0, 3, 4, -4]))
|
||||
1.5
|
||||
>>> find_median(nums=([1.1, 2.2, 2, 3.3, 4.4, 4]))
|
||||
2.65
|
||||
"""
|
||||
div, mod = divmod(len(nums), 2)
|
||||
if mod:
|
||||
return nums[div]
|
||||
return (nums[div] + nums[(div) - 1]) / 2
|
||||
|
||||
|
||||
def interquartile_range(nums: list[int | float]) -> float:
|
||||
"""
|
||||
Return the interquartile range for a list of numeric values.
|
||||
:param nums: The list of numeric values.
|
||||
:return: interquartile range
|
||||
|
||||
>>> interquartile_range(nums=[4, 1, 2, 3, 2])
|
||||
2.0
|
||||
>>> interquartile_range(nums = [-2, -7, -10, 9, 8, 4, -67, 45])
|
||||
17.0
|
||||
>>> interquartile_range(nums = [-2.1, -7.1, -10.1, 9.1, 8.1, 4.1, -67.1, 45.1])
|
||||
17.2
|
||||
>>> interquartile_range(nums = [0, 0, 0, 0, 0])
|
||||
0.0
|
||||
>>> interquartile_range(nums=[])
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: The list is empty. Provide a non-empty list.
|
||||
"""
|
||||
if not nums:
|
||||
raise ValueError("The list is empty. Provide a non-empty list.")
|
||||
nums.sort()
|
||||
length = len(nums)
|
||||
div, mod = divmod(length, 2)
|
||||
q1 = find_median(nums[:div])
|
||||
half_length = sum((div, mod))
|
||||
q3 = find_median(nums[half_length:length])
|
||||
return q3 - q1
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
Loading…
Reference in New Issue
Block a user