mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-30 16:31:08 +00:00
Update genetic_algorithm_optimization.py
This commit is contained in:
parent
d62f39f647
commit
dbd29aed76
|
@ -1,6 +1,7 @@
|
||||||
import random
|
import random
|
||||||
from collections.abc import Callable, Sequence
|
from collections.abc import Callable, Sequence
|
||||||
from concurrent.futures import ThreadPoolExecutor
|
from concurrent.futures import ThreadPoolExecutor
|
||||||
|
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
|
||||||
# Parameters
|
# Parameters
|
||||||
|
@ -82,10 +83,10 @@ class GeneticAlgorithm:
|
||||||
... )
|
... )
|
||||||
>>> individual = np.array([1.0, 2.0])
|
>>> individual = np.array([1.0, 2.0])
|
||||||
>>> ga.fitness(individual)
|
>>> ga.fitness(individual)
|
||||||
5.0 # The fitness should be 1^2 + 2^2 = 5
|
-5.0 # The fitness should be -1^2 + 2^2 = 5 for minimizing
|
||||||
>>> ga.maximize = True
|
>>> ga.maximize = True
|
||||||
>>> ga.fitness(individual)
|
>>> ga.fitness(individual)
|
||||||
-5.0 # The fitness should be -5 when maximizing
|
5.0 # The fitness should be 1^2 + 2^2 = 5 when maximizing
|
||||||
"""
|
"""
|
||||||
value = float(self.function(*individual)) # Ensure fitness is a float
|
value = float(self.function(*individual)) # Ensure fitness is a float
|
||||||
return value if self.maximize else -value # If minimizing, invert the fitness
|
return value if self.maximize else -value # If minimizing, invert the fitness
|
||||||
|
@ -114,9 +115,11 @@ class GeneticAlgorithm:
|
||||||
>>> selected_parents = ga.select_parents(population_score)
|
>>> selected_parents = ga.select_parents(population_score)
|
||||||
>>> len(selected_parents)
|
>>> len(selected_parents)
|
||||||
2 # Should select the two parents with the best fitness scores.
|
2 # Should select the two parents with the best fitness scores.
|
||||||
>>> np.array_equal(selected_parents[0], np.array([1.0, 2.0])) # Parent 1 should be [1.0, 2.0]
|
>>> np.array_equal(selected_parents[0], np.array([1.0, 2.0]))
|
||||||
|
# Parent 1 should be [1.0, 2.0]
|
||||||
True
|
True
|
||||||
>>> np.array_equal(selected_parents[1], np.array([-1.0, -2.0])) # Parent 2 should be [-1.0, -2.0]
|
>>> np.array_equal(selected_parents[1], np.array([-1.0, -2.0]))
|
||||||
|
# Parent 2 should be [-1.0, -2.0]
|
||||||
True
|
True
|
||||||
"""
|
"""
|
||||||
population_score.sort(key=lambda score_tuple: score_tuple[1], reverse=True)
|
population_score.sort(key=lambda score_tuple: score_tuple[1], reverse=True)
|
||||||
|
@ -237,6 +240,7 @@ class GeneticAlgorithm:
|
||||||
>>> isinstance(best_solution[1], float) # Second element should be a float
|
>>> isinstance(best_solution[1], float) # Second element should be a float
|
||||||
True
|
True
|
||||||
"""
|
"""
|
||||||
|
best_individual = None
|
||||||
for generation in range(self.generations):
|
for generation in range(self.generations):
|
||||||
# Evaluate population fitness (multithreaded)
|
# Evaluate population fitness (multithreaded)
|
||||||
population_score = self.evaluate_population()
|
population_score = self.evaluate_population()
|
||||||
|
|
Loading…
Reference in New Issue
Block a user