mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 16:27:02 +00:00
added runge-kutta (#1393)
This commit is contained in:
parent
5c351d81bf
commit
dbf904f438
44
maths/runge_kutta.py
Normal file
44
maths/runge_kutta.py
Normal file
|
@ -0,0 +1,44 @@
|
|||
import numpy as np
|
||||
|
||||
|
||||
def runge_kutta(f, y0, x0, h, x_end):
|
||||
"""
|
||||
Calculate the numeric solution at each step to the ODE f(x, y) using RK4
|
||||
|
||||
https://en.wikipedia.org/wiki/Runge-Kutta_methods
|
||||
|
||||
Arguments:
|
||||
f -- The ode as a function of x and y
|
||||
y0 -- the initial value for y
|
||||
x0 -- the initial value for x
|
||||
h -- the stepsize
|
||||
x_end -- the end value for x
|
||||
|
||||
>>> # the exact solution is math.exp(x)
|
||||
>>> def f(x, y):
|
||||
... return y
|
||||
>>> y0 = 1
|
||||
>>> y = runge_kutta(f, y0, 0.0, 0.01, 5)
|
||||
>>> y[-1]
|
||||
148.41315904125113
|
||||
"""
|
||||
N = int(np.ceil((x_end - x0)/h))
|
||||
y = np.zeros((N + 1,))
|
||||
y[0] = y0
|
||||
x = x0
|
||||
|
||||
for k in range(N):
|
||||
k1 = f(x, y[k])
|
||||
k2 = f(x + 0.5*h, y[k] + 0.5*h*k1)
|
||||
k3 = f(x + 0.5*h, y[k] + 0.5*h*k2)
|
||||
k4 = f(x + h, y[k] + h * k3)
|
||||
y[k + 1] = y[k] + (1/6)*h*(k1 + 2*k2 + 2*k3 + k4)
|
||||
x += h
|
||||
|
||||
return y
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
Loading…
Reference in New Issue
Block a user