mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-23 21:11:08 +00:00
Added doctest, docstring and typehint for sigmoid_function & cost_function (#10828)
* Added doctest for sigmoid_function & cost_function * Update logistic_regression.py * Update logistic_regression.py * Minor formatting changes in doctests * Apply suggestions from code review * Made requested changes in logistic_regression.py * Apply suggestions from code review --------- Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com>
This commit is contained in:
parent
c71c280726
commit
dd7d18d49e
|
@ -27,7 +27,7 @@ from sklearn import datasets
|
|||
# classification problems
|
||||
|
||||
|
||||
def sigmoid_function(z):
|
||||
def sigmoid_function(z: float | np.ndarray) -> float | np.ndarray:
|
||||
"""
|
||||
Also known as Logistic Function.
|
||||
|
||||
|
@ -42,11 +42,63 @@ def sigmoid_function(z):
|
|||
|
||||
@param z: input to the function
|
||||
@returns: returns value in the range 0 to 1
|
||||
|
||||
Examples:
|
||||
>>> sigmoid_function(4)
|
||||
0.9820137900379085
|
||||
>>> sigmoid_function(np.array([-3, 3]))
|
||||
array([0.04742587, 0.95257413])
|
||||
>>> sigmoid_function(np.array([-3, 3, 1]))
|
||||
array([0.04742587, 0.95257413, 0.73105858])
|
||||
>>> sigmoid_function(np.array([-0.01, -2, -1.9]))
|
||||
array([0.49750002, 0.11920292, 0.13010847])
|
||||
>>> sigmoid_function(np.array([-1.3, 5.3, 12]))
|
||||
array([0.21416502, 0.9950332 , 0.99999386])
|
||||
>>> sigmoid_function(np.array([0.01, 0.02, 4.1]))
|
||||
array([0.50249998, 0.50499983, 0.9836975 ])
|
||||
>>> sigmoid_function(np.array([0.8]))
|
||||
array([0.68997448])
|
||||
"""
|
||||
return 1 / (1 + np.exp(-z))
|
||||
|
||||
|
||||
def cost_function(h, y):
|
||||
def cost_function(h: np.ndarray, y: np.ndarray) -> float:
|
||||
"""
|
||||
Cost function quantifies the error between predicted and expected values.
|
||||
The cost function used in Logistic Regression is called Log Loss
|
||||
or Cross Entropy Function.
|
||||
|
||||
J(θ) = (1/m) * Σ [ -y * log(hθ(x)) - (1 - y) * log(1 - hθ(x)) ]
|
||||
|
||||
Where:
|
||||
- J(θ) is the cost that we want to minimize during training
|
||||
- m is the number of training examples
|
||||
- Σ represents the summation over all training examples
|
||||
- y is the actual binary label (0 or 1) for a given example
|
||||
- hθ(x) is the predicted probability that x belongs to the positive class
|
||||
|
||||
@param h: the output of sigmoid function. It is the estimated probability
|
||||
that the input example 'x' belongs to the positive class
|
||||
|
||||
@param y: the actual binary label associated with input example 'x'
|
||||
|
||||
Examples:
|
||||
>>> estimations = sigmoid_function(np.array([0.3, -4.3, 8.1]))
|
||||
>>> cost_function(h=estimations,y=np.array([1, 0, 1]))
|
||||
0.18937868932131605
|
||||
>>> estimations = sigmoid_function(np.array([4, 3, 1]))
|
||||
>>> cost_function(h=estimations,y=np.array([1, 0, 0]))
|
||||
1.459999655669926
|
||||
>>> estimations = sigmoid_function(np.array([4, -3, -1]))
|
||||
>>> cost_function(h=estimations,y=np.array([1,0,0]))
|
||||
0.1266663223365915
|
||||
>>> estimations = sigmoid_function(0)
|
||||
>>> cost_function(h=estimations,y=np.array([1]))
|
||||
0.6931471805599453
|
||||
|
||||
References:
|
||||
- https://en.wikipedia.org/wiki/Logistic_regression
|
||||
"""
|
||||
return (-y * np.log(h) - (1 - y) * np.log(1 - h)).mean()
|
||||
|
||||
|
||||
|
@ -75,6 +127,10 @@ def logistic_reg(alpha, x, y, max_iterations=70000):
|
|||
# In[68]:
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
||||
|
||||
iris = datasets.load_iris()
|
||||
x = iris.data[:, :2]
|
||||
y = (iris.target != 0) * 1
|
||||
|
|
Loading…
Reference in New Issue
Block a user