mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 16:27:02 +00:00
fixed project eular readme (#1391)
This commit is contained in:
parent
86a2d5fd03
commit
e0158c2c30
|
@ -8,107 +8,4 @@ insights to solve. Project Euler is ideal for mathematicians who are learning to
|
|||
Here the efficiency of your code is also checked.
|
||||
I've tried to provide all the best possible solutions.
|
||||
|
||||
PROBLEMS:
|
||||
|
||||
1. If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3,5,6 and 9. The sum of these multiples is 23.
|
||||
Find the sum of all the multiples of 3 or 5 below N.
|
||||
|
||||
2. Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2,
|
||||
the first 10 terms will be:
|
||||
1,2,3,5,8,13,21,34,55,89,..
|
||||
By considering the terms in the Fibonacci sequence whose values do not exceed n, find the sum of the even-valued terms.
|
||||
e.g. for n=10, we have {2,8}, sum is 10.
|
||||
|
||||
3. The prime factors of 13195 are 5,7,13 and 29. What is the largest prime factor of a given number N?
|
||||
e.g. for 10, largest prime factor = 5. For 17, largest prime factor = 17.
|
||||
|
||||
4. A palindromic number reads the same both ways. The largest palindrome made from the product of two 2-digit numbers is 9009 = 91 × 99.
|
||||
Find the largest palindrome made from the product of two 3-digit numbers which is less than N.
|
||||
|
||||
5. 2520 is the smallest number that can be divided by each of the numbers from 1 to 10 without any remainder.
|
||||
What is the smallest positive number that is evenly divisible(divisible with no remainder) by all of the numbers from 1 to N?
|
||||
|
||||
6. The sum of the squares of the first ten natural numbers is,
|
||||
1^2 + 2^2 + ... + 10^2 = 385
|
||||
The square of the sum of the first ten natural numbers is,
|
||||
(1 + 2 + ... + 10)^2 = 552 = 3025
|
||||
Hence the difference between the sum of the squares of the first ten natural numbers and the square of the sum is 3025 − 385 = 2640.
|
||||
Find the difference between the sum of the squares of the first N natural numbers and the square of the sum.
|
||||
|
||||
7. By listing the first six prime numbers: 2, 3, 5, 7, 11, and 13, we can see that the 6th prime is 13.
|
||||
What is the Nth prime number?
|
||||
|
||||
8. Find the consecutive k digits in a number N that have the largest product.
|
||||
|
||||
9. A Pythagorean triplet is a set of three natural numbers, a < b < c, for which,
|
||||
a^2 + b^2 = c^2
|
||||
There exists exactly one Pythagorean triplet for which a + b + c = 1000.
|
||||
Find the product abc.
|
||||
|
||||
10. Find sum of all prime numbers below 2 million.
|
||||
|
||||
11. In the given 20x20 grid, find 4 adjacent numbers (horizontally, vertically or diagonally) that have the largest product.
|
||||
|
||||
12. The sequence of triangle numbers is generated by adding the natural numbers. So the 7th triangle number would be 1 + 2 + 3 + 4 + 5 + 6 + 7 = 28. The first ten terms would be:
|
||||
|
||||
1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...
|
||||
|
||||
Let us list the factors of the first seven triangle numbers:
|
||||
|
||||
1: 1
|
||||
3: 1,3
|
||||
6: 1,2,3,6
|
||||
10: 1,2,5,10
|
||||
15: 1,3,5,15
|
||||
21: 1,3,7,21
|
||||
28: 1,2,4,7,14,28
|
||||
We can see that 28 is the first triangle number to have over five divisors.
|
||||
|
||||
What is the value of the first triangle number to have over five hundred divisors?
|
||||
|
||||
13. Work out the first 10 digits of the sum of the given hundred 50 digit numbers.
|
||||
|
||||
14. The following iterative sequence is defined for the set of positive integers:
|
||||
n → n/2 (n is even)
|
||||
n → 3n + 1 (n is odd)
|
||||
Using the rule above and starting with 13, we generate the following sequence:
|
||||
13 → 40 → 20 → 10 → 5 → 16 → 8 → 4 → 2 → 1
|
||||
Which starting number, under one million, produces the longest chain?
|
||||
|
||||
15. Starting from top left corner of a 20x20 grid how many routes are there to reach the bottom left corner?
|
||||
|
||||
16. 2^15 = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26.
|
||||
What is the sum of the digits of the number 2^1000?
|
||||
|
||||
17. If the numbers 1 through 1000 were written in words, how many total letters would be used?
|
||||
|
||||
18. By starting at the top of the triangle below and moving to adjacent numbers on the row below, the maximum total from top to bottom is 23.
|
||||
3
|
||||
7 4
|
||||
2 4 6
|
||||
8 5 9 3
|
||||
|
||||
That is, 3 + 7 + 4 + 9 = 23.
|
||||
|
||||
Find the maximum total from top to bottom of the triangle below:
|
||||
|
||||
75
|
||||
95 64
|
||||
17 47 82
|
||||
18 35 87 10
|
||||
20 04 82 47 65
|
||||
19 01 23 75 03 34
|
||||
88 02 77 73 07 63 67
|
||||
99 65 04 28 06 16 70 92
|
||||
41 41 26 56 83 40 80 70 33
|
||||
41 48 72 33 47 32 37 16 94 29
|
||||
53 71 44 65 25 43 91 52 97 51 14
|
||||
70 11 33 28 77 73 17 78 39 68 17 57
|
||||
91 71 52 38 17 14 91 43 58 50 27 29 48
|
||||
63 66 04 68 89 53 67 30 73 16 69 87 40 31
|
||||
04 62 98 27 23 09 70 98 73 93 38 53 60 04 23
|
||||
|
||||
20. n! means n × (n − 1) × ... × 3 × 2 × 1
|
||||
For example, 10! = 10 × 9 × ... × 3 × 2 × 1 = 3628800,
|
||||
and the sum of the digits in the number 10! is 3 + 6 + 2 + 8 + 8 + 0 + 0 = 27.
|
||||
Find the sum of the digits in the number 100!
|
||||
For description of the problem statements, kindly visit https://projecteuler.net/show=all
|
||||
|
|
Loading…
Reference in New Issue
Block a user