mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 16:27:02 +00:00
add bp neural network with 3 layers
This commit is contained in:
parent
1bed547226
commit
e1befed976
134
Neural_Network/neuralnetwork_bp3.py
Normal file
134
Neural_Network/neuralnetwork_bp3.py
Normal file
|
@ -0,0 +1,134 @@
|
|||
#-*- coding:utf-8 -*-
|
||||
'''
|
||||
Author: Stephen Lee
|
||||
Date: 2017.9.21
|
||||
|
||||
BP neural network with three layers
|
||||
'''
|
||||
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
class Bpnw():
|
||||
|
||||
def __init__(self,n_layer1,n_layer2,n_layer3,rate_w=0.3,rate_t=0.3):
|
||||
'''
|
||||
:param n_layer1: number of input layer
|
||||
:param n_layer2: number of hiden layer
|
||||
:param n_layer3: number of output layer
|
||||
:param rate_w: rate of weight learning
|
||||
:param rate_t: rate of threshold learning
|
||||
'''
|
||||
self.num1 = n_layer1
|
||||
self.num2 = n_layer2
|
||||
self.num3 = n_layer3
|
||||
self.rate_weight = rate_w
|
||||
self.rate_thre = rate_t
|
||||
self.thre2 = -2*np.random.rand(self.num2)+1
|
||||
self.thre3 = -2*np.random.rand(self.num3)+1
|
||||
self.vji = np.mat(-2*np.random.rand(self.num2, self.num1)+1)
|
||||
self.wkj = np.mat(-2*np.random.rand(self.num3, self.num2)+1)
|
||||
|
||||
def sig(self,x):
|
||||
return 1 / (1 + np.exp(-1*x))
|
||||
|
||||
def sig_plain(self,x):
|
||||
return 1 / (1 + np.exp(-1*x))
|
||||
|
||||
def do_round(self,x):
|
||||
return round(x, 3)
|
||||
|
||||
def trian(self,patterns,data_train, data_teach, n_repeat, error_accuracy,draw_e = bool):
|
||||
'''
|
||||
:param patterns: the number of patterns
|
||||
:param data_train: training data x; numpy.ndarray
|
||||
:param data_teach: training data y; numpy.ndarray
|
||||
:param n_repeat: echoes
|
||||
:param error_accuracy: error accuracy
|
||||
:return: None
|
||||
'''
|
||||
data_train = np.asarray(data_train)
|
||||
data_teach = np.asarray(data_teach)
|
||||
print('-------------------Start Training-------------------------')
|
||||
print(' - - Shape: Train_Data ',np.shape(data_train))
|
||||
print(' - - Shape: Teach_Data ',np.shape(data_teach))
|
||||
rp = 0
|
||||
all_mse = []
|
||||
mse = 10000
|
||||
while rp < n_repeat and mse >= error_accuracy:
|
||||
alle = 0
|
||||
final_out = []
|
||||
for g in range(np.shape(data_train)[0]):
|
||||
net_i = data_train[g]
|
||||
out1 = net_i
|
||||
|
||||
net_j = out1 * self.vji.T - self.thre2
|
||||
out2=self.sig(net_j)
|
||||
|
||||
net_k = out2 * self.wkj.T - self.thre3
|
||||
out3 = self.sig(net_k)
|
||||
|
||||
# learning process
|
||||
pd_k_all = np.multiply(np.multiply(out3,(1 - out3)),(data_teach[g]-out3))
|
||||
pd_j_all = np.multiply(pd_k_all * self.wkj,np.multiply(out2,1-out2))
|
||||
#upgrade weight
|
||||
self.wkj = self.wkj + pd_k_all.T * out2 *self.rate_weight
|
||||
self.vji = self.vji + pd_j_all.T * out1 * self.rate_weight
|
||||
#upgrade threshold
|
||||
self.thre3 = self.thre3 - pd_k_all * self.rate_thre
|
||||
self.thre2 = self.thre2 - pd_j_all * self.rate_thre
|
||||
#calculate sum of error
|
||||
errors = np.sum(abs((data_teach[g] - out3)))
|
||||
|
||||
alle = alle + errors
|
||||
final_out.extend(out3.getA().tolist())
|
||||
final_out3 = [list(map(self.do_round,each)) for each in final_out]
|
||||
|
||||
rp = rp + 1
|
||||
mse = alle/patterns
|
||||
all_mse.append(mse)
|
||||
def draw_error():
|
||||
yplot = [error_accuracy for i in range(int(n_repeat * 1.2))]
|
||||
plt.plot(all_mse, '+-')
|
||||
plt.plot(yplot, 'r--')
|
||||
plt.xlabel('Learning Times')
|
||||
plt.ylabel('All_mse')
|
||||
plt.grid(True,alpha = 0.7)
|
||||
plt.show()
|
||||
print('------------------Training Complished---------------------')
|
||||
print(' - - Training epoch: ', rp, ' - - Mse: %.6f'%mse)
|
||||
print(' - - Last Output: ', final_out3)
|
||||
if draw_e:
|
||||
draw_error()
|
||||
|
||||
def predict(self,data_test):
|
||||
'''
|
||||
:param data_test: data test, numpy.ndarray
|
||||
:return: predict output data
|
||||
'''
|
||||
data_test = np.asarray(data_test)
|
||||
produce_out = []
|
||||
print('-------------------Start Testing-------------------------')
|
||||
print(' - - Shape: Test_Data ',np.shape(data_test))
|
||||
print(np.shape(data_test))
|
||||
for g in range(np.shape(data_test)[0]):
|
||||
|
||||
net_i = data_test[g]
|
||||
out1 = net_i
|
||||
|
||||
net_j = out1 * self.vji.T - self.thre2
|
||||
out2 = self.sig(net_j)
|
||||
|
||||
net_k = out2 * self.wkj.T - self.thre3
|
||||
out3 = self.sig(net_k)
|
||||
produce_out.extend(out3.getA().tolist())
|
||||
res = [list(map(self.do_round,each)) for each in produce_out]
|
||||
return np.asarray(res)
|
||||
|
||||
|
||||
def main():
|
||||
#I will fish the mian function later
|
||||
pass
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
Loading…
Reference in New Issue
Block a user