mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-27 15:01:08 +00:00
Implement the melkman anlgorithm for computing convex hulls (#2916)
* Implement the melkman anlgorithm for computing convex hulls * Link melkman algorithm description * Format melkman algorithm code * Add type hints to functions * Fix build errors
This commit is contained in:
parent
fd7da5ff8f
commit
e20895a4ff
|
@ -13,6 +13,8 @@ which have not been implemented here, yet.
|
|||
|
||||
"""
|
||||
|
||||
from typing import Iterable, List, Set, Union
|
||||
|
||||
|
||||
class Point:
|
||||
"""
|
||||
|
@ -81,7 +83,9 @@ class Point:
|
|||
return hash(self.x)
|
||||
|
||||
|
||||
def _construct_points(list_of_tuples):
|
||||
def _construct_points(
|
||||
list_of_tuples: Union[List[Point], List[List[float]], Iterable[List[float]]]
|
||||
) -> List[Point]:
|
||||
"""
|
||||
constructs a list of points from an array-like object of numbers
|
||||
|
||||
|
@ -110,9 +114,12 @@ def _construct_points(list_of_tuples):
|
|||
[]
|
||||
"""
|
||||
|
||||
points = []
|
||||
points: List[Point] = []
|
||||
if list_of_tuples:
|
||||
for p in list_of_tuples:
|
||||
if isinstance(p, Point):
|
||||
points.append(p)
|
||||
else:
|
||||
try:
|
||||
points.append(Point(p[0], p[1]))
|
||||
except (IndexError, TypeError):
|
||||
|
@ -123,7 +130,7 @@ def _construct_points(list_of_tuples):
|
|||
return points
|
||||
|
||||
|
||||
def _validate_input(points):
|
||||
def _validate_input(points: Union[List[Point], List[List[float]]]) -> List[Point]:
|
||||
"""
|
||||
validates an input instance before a convex-hull algorithms uses it
|
||||
|
||||
|
@ -165,33 +172,18 @@ def _validate_input(points):
|
|||
ValueError: Expecting an iterable object but got an non-iterable type 1
|
||||
"""
|
||||
|
||||
if not points:
|
||||
raise ValueError(f"Expecting a list of points but got {points}")
|
||||
|
||||
if isinstance(points, set):
|
||||
points = list(points)
|
||||
|
||||
try:
|
||||
if hasattr(points, "__iter__") and not isinstance(points[0], Point):
|
||||
if isinstance(points[0], (list, tuple)):
|
||||
points = _construct_points(points)
|
||||
else:
|
||||
raise ValueError(
|
||||
"Expecting an iterable of type Point, list or tuple. "
|
||||
f"Found objects of type {type(points[0])} instead"
|
||||
)
|
||||
elif not hasattr(points, "__iter__"):
|
||||
if not hasattr(points, "__iter__"):
|
||||
raise ValueError(
|
||||
f"Expecting an iterable object but got an non-iterable type {points}"
|
||||
)
|
||||
except TypeError:
|
||||
print("Expecting an iterable of type Point, list or tuple.")
|
||||
raise
|
||||
|
||||
return points
|
||||
if not points:
|
||||
raise ValueError(f"Expecting a list of points but got {points}")
|
||||
|
||||
return _construct_points(points)
|
||||
|
||||
|
||||
def _det(a, b, c):
|
||||
def _det(a: Point, b: Point, c: Point) -> float:
|
||||
"""
|
||||
Computes the sign perpendicular distance of a 2d point c from a line segment
|
||||
ab. The sign indicates the direction of c relative to ab.
|
||||
|
@ -226,7 +218,7 @@ def _det(a, b, c):
|
|||
return det
|
||||
|
||||
|
||||
def convex_hull_bf(points):
|
||||
def convex_hull_bf(points: List[Point]) -> List[Point]:
|
||||
"""
|
||||
Constructs the convex hull of a set of 2D points using a brute force algorithm.
|
||||
The algorithm basically considers all combinations of points (i, j) and uses the
|
||||
|
@ -299,7 +291,7 @@ def convex_hull_bf(points):
|
|||
return sorted(convex_set)
|
||||
|
||||
|
||||
def convex_hull_recursive(points):
|
||||
def convex_hull_recursive(points: List[Point]) -> List[Point]:
|
||||
"""
|
||||
Constructs the convex hull of a set of 2D points using a divide-and-conquer strategy
|
||||
The algorithm exploits the geometric properties of the problem by repeatedly
|
||||
|
@ -369,7 +361,9 @@ def convex_hull_recursive(points):
|
|||
return sorted(convex_set)
|
||||
|
||||
|
||||
def _construct_hull(points, left, right, convex_set):
|
||||
def _construct_hull(
|
||||
points: List[Point], left: Point, right: Point, convex_set: Set[Point]
|
||||
) -> None:
|
||||
"""
|
||||
|
||||
Parameters
|
||||
|
@ -411,6 +405,77 @@ def _construct_hull(points, left, right, convex_set):
|
|||
_construct_hull(candidate_points, extreme_point, right, convex_set)
|
||||
|
||||
|
||||
def convex_hull_melkman(points: List[Point]) -> List[Point]:
|
||||
"""
|
||||
Constructs the convex hull of a set of 2D points using the melkman algorithm.
|
||||
The algorithm works by iteratively inserting points of a simple polygonal chain
|
||||
(meaning that no line segments between two consecutive points cross each other).
|
||||
Sorting the points yields such a polygonal chain.
|
||||
|
||||
For a detailed description, see http://cgm.cs.mcgill.ca/~athens/cs601/Melkman.html
|
||||
|
||||
Runtime: O(n log n) - O(n) if points are already sorted in the input
|
||||
|
||||
Parameters
|
||||
---------
|
||||
points: array-like of object of Points, lists or tuples.
|
||||
The set of 2d points for which the convex-hull is needed
|
||||
|
||||
Returns
|
||||
------
|
||||
convex_set: list, the convex-hull of points sorted in non-decreasing order.
|
||||
|
||||
See Also
|
||||
--------
|
||||
|
||||
Examples
|
||||
---------
|
||||
>>> convex_hull_melkman([[0, 0], [1, 0], [10, 1]])
|
||||
[(0.0, 0.0), (1.0, 0.0), (10.0, 1.0)]
|
||||
>>> convex_hull_melkman([[0, 0], [1, 0], [10, 0]])
|
||||
[(0.0, 0.0), (10.0, 0.0)]
|
||||
>>> convex_hull_melkman([[-1, 1],[-1, -1], [0, 0], [0.5, 0.5], [1, -1], [1, 1],
|
||||
... [-0.75, 1]])
|
||||
[(-1.0, -1.0), (-1.0, 1.0), (1.0, -1.0), (1.0, 1.0)]
|
||||
>>> convex_hull_melkman([(0, 3), (2, 2), (1, 1), (2, 1), (3, 0), (0, 0), (3, 3),
|
||||
... (2, -1), (2, -4), (1, -3)])
|
||||
[(0.0, 0.0), (0.0, 3.0), (1.0, -3.0), (2.0, -4.0), (3.0, 0.0), (3.0, 3.0)]
|
||||
"""
|
||||
points = sorted(_validate_input(points))
|
||||
n = len(points)
|
||||
|
||||
convex_hull = points[:2]
|
||||
for i in range(2, n):
|
||||
det = _det(convex_hull[1], convex_hull[0], points[i])
|
||||
if det > 0:
|
||||
convex_hull.insert(0, points[i])
|
||||
break
|
||||
elif det < 0:
|
||||
convex_hull.append(points[i])
|
||||
break
|
||||
else:
|
||||
convex_hull[1] = points[i]
|
||||
i += 1
|
||||
|
||||
for i in range(i, n):
|
||||
if (
|
||||
_det(convex_hull[0], convex_hull[-1], points[i]) > 0
|
||||
and _det(convex_hull[-1], convex_hull[0], points[1]) < 0
|
||||
):
|
||||
# The point lies within the convex hull
|
||||
continue
|
||||
|
||||
convex_hull.insert(0, points[i])
|
||||
convex_hull.append(points[i])
|
||||
while _det(convex_hull[0], convex_hull[1], convex_hull[2]) >= 0:
|
||||
del convex_hull[1]
|
||||
while _det(convex_hull[-1], convex_hull[-2], convex_hull[-3]) <= 0:
|
||||
del convex_hull[-2]
|
||||
|
||||
# `convex_hull` is contains the convex hull in circular order
|
||||
return sorted(convex_hull[1:] if len(convex_hull) > 3 else convex_hull)
|
||||
|
||||
|
||||
def main():
|
||||
points = [
|
||||
(0, 3),
|
||||
|
@ -426,10 +491,14 @@ def main():
|
|||
]
|
||||
# the convex set of points is
|
||||
# [(0, 0), (0, 3), (1, -3), (2, -4), (3, 0), (3, 3)]
|
||||
results_recursive = convex_hull_recursive(points)
|
||||
results_bf = convex_hull_bf(points)
|
||||
|
||||
results_recursive = convex_hull_recursive(points)
|
||||
assert results_bf == results_recursive
|
||||
|
||||
results_melkman = convex_hull_melkman(points)
|
||||
assert results_bf == results_melkman
|
||||
|
||||
print(results_bf)
|
||||
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user