mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-23 21:11:08 +00:00
Improve comments, add doctests for kahns_algorithm_topo.py (#11668)
* Improve comments, add doctests for kahns_algorithm_topo.py * Improve function docstring * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Rename variables, remove print --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
40f65e8150
commit
e20b503b24
|
@ -1,36 +1,61 @@
|
||||||
def topological_sort(graph):
|
def topological_sort(graph: dict[int, list[int]]) -> list[int] | None:
|
||||||
"""
|
"""
|
||||||
Kahn's Algorithm is used to find Topological ordering of Directed Acyclic Graph
|
Perform topological sorting of a Directed Acyclic Graph (DAG)
|
||||||
using BFS
|
using Kahn's Algorithm via Breadth-First Search (BFS).
|
||||||
|
|
||||||
|
Topological sorting is a linear ordering of vertices in a graph such that for
|
||||||
|
every directed edge u → v, vertex u comes before vertex v in the ordering.
|
||||||
|
|
||||||
|
Parameters:
|
||||||
|
graph: Adjacency list representing the directed graph where keys are
|
||||||
|
vertices, and values are lists of adjacent vertices.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
The topologically sorted order of vertices if the graph is a DAG.
|
||||||
|
Returns None if the graph contains a cycle.
|
||||||
|
|
||||||
|
Example:
|
||||||
|
>>> graph = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []}
|
||||||
|
>>> topological_sort(graph)
|
||||||
|
[0, 1, 2, 3, 4, 5]
|
||||||
|
|
||||||
|
>>> graph_with_cycle = {0: [1], 1: [2], 2: [0]}
|
||||||
|
>>> topological_sort(graph_with_cycle)
|
||||||
"""
|
"""
|
||||||
|
|
||||||
indegree = [0] * len(graph)
|
indegree = [0] * len(graph)
|
||||||
queue = []
|
queue = []
|
||||||
topo = []
|
topo_order = []
|
||||||
cnt = 0
|
processed_vertices_count = 0
|
||||||
|
|
||||||
|
# Calculate the indegree of each vertex
|
||||||
for values in graph.values():
|
for values in graph.values():
|
||||||
for i in values:
|
for i in values:
|
||||||
indegree[i] += 1
|
indegree[i] += 1
|
||||||
|
|
||||||
|
# Add all vertices with 0 indegree to the queue
|
||||||
for i in range(len(indegree)):
|
for i in range(len(indegree)):
|
||||||
if indegree[i] == 0:
|
if indegree[i] == 0:
|
||||||
queue.append(i)
|
queue.append(i)
|
||||||
|
|
||||||
|
# Perform BFS
|
||||||
while queue:
|
while queue:
|
||||||
vertex = queue.pop(0)
|
vertex = queue.pop(0)
|
||||||
cnt += 1
|
processed_vertices_count += 1
|
||||||
topo.append(vertex)
|
topo_order.append(vertex)
|
||||||
for x in graph[vertex]:
|
|
||||||
indegree[x] -= 1
|
|
||||||
if indegree[x] == 0:
|
|
||||||
queue.append(x)
|
|
||||||
|
|
||||||
if cnt != len(graph):
|
# Traverse neighbors
|
||||||
print("Cycle exists")
|
for neighbor in graph[vertex]:
|
||||||
else:
|
indegree[neighbor] -= 1
|
||||||
print(topo)
|
if indegree[neighbor] == 0:
|
||||||
|
queue.append(neighbor)
|
||||||
|
|
||||||
|
if processed_vertices_count != len(graph):
|
||||||
|
return None # no topological ordering exists due to cycle
|
||||||
|
return topo_order # valid topological ordering
|
||||||
|
|
||||||
|
|
||||||
# Adjacency List of Graph
|
if __name__ == "__main__":
|
||||||
graph = {0: [1, 2], 1: [3], 2: [3], 3: [4, 5], 4: [], 5: []}
|
import doctest
|
||||||
topological_sort(graph)
|
|
||||||
|
doctest.testmod()
|
||||||
|
|
Loading…
Reference in New Issue
Block a user