mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-23 21:11:08 +00:00
[pre-commit.ci] auto fixes from pre-commit.com hooks
for more information, see https://pre-commit.ci
This commit is contained in:
parent
b91bc91ee5
commit
e23173e6a3
|
@ -1,6 +1,7 @@
|
|||
import numpy as np
|
||||
import requests
|
||||
|
||||
|
||||
def collect_dataset():
|
||||
"""Collect dataset of CSGO
|
||||
The dataset contains ADR vs Rating of a Player
|
||||
|
@ -20,6 +21,7 @@ def collect_dataset():
|
|||
dataset = np.matrix(data)
|
||||
return dataset
|
||||
|
||||
|
||||
def run_steep_gradient_descent(data_x, data_y, len_data, alpha, theta, lambda_reg):
|
||||
"""Run steep gradient descent and updates the Feature vector accordingly
|
||||
:param data_x : contains the dataset
|
||||
|
@ -36,7 +38,7 @@ def run_steep_gradient_descent(data_x, data_y, len_data, alpha, theta, lambda_re
|
|||
prod = np.dot(theta, data_x.transpose())
|
||||
prod -= data_y.transpose()
|
||||
sum_grad = np.dot(prod, data_x)
|
||||
|
||||
|
||||
# Add regularization to the gradient
|
||||
theta_regularized = np.copy(theta)
|
||||
theta_regularized[0, 0] = 0 # Don't regularize the bias term
|
||||
|
@ -45,6 +47,7 @@ def run_steep_gradient_descent(data_x, data_y, len_data, alpha, theta, lambda_re
|
|||
theta = theta - (alpha / n) * sum_grad
|
||||
return theta
|
||||
|
||||
|
||||
def sum_of_square_error(data_x, data_y, len_data, theta, lambda_reg):
|
||||
"""Return sum of square error for error calculation
|
||||
:param data_x : contains our dataset
|
||||
|
@ -57,12 +60,15 @@ def sum_of_square_error(data_x, data_y, len_data, theta, lambda_reg):
|
|||
prod = np.dot(theta, data_x.transpose())
|
||||
prod -= data_y.transpose()
|
||||
sum_elem = np.sum(np.square(prod))
|
||||
|
||||
|
||||
# Add regularization to the cost function
|
||||
regularization_term = lambda_reg * np.sum(np.square(theta[:, 1:])) # Don't regularize the bias term
|
||||
regularization_term = lambda_reg * np.sum(
|
||||
np.square(theta[:, 1:])
|
||||
) # Don't regularize the bias term
|
||||
error = (sum_elem / (2 * len_data)) + (regularization_term / (2 * len_data))
|
||||
return error
|
||||
|
||||
|
||||
def run_ridge_regression(data_x, data_y, lambda_reg=1.0):
|
||||
"""Implement Ridge Regression over the dataset
|
||||
:param data_x : contains our dataset
|
||||
|
@ -79,12 +85,15 @@ def run_ridge_regression(data_x, data_y, lambda_reg=1.0):
|
|||
theta = np.zeros((1, no_features))
|
||||
|
||||
for i in range(iterations):
|
||||
theta = run_steep_gradient_descent(data_x, data_y, len_data, alpha, theta, lambda_reg)
|
||||
theta = run_steep_gradient_descent(
|
||||
data_x, data_y, len_data, alpha, theta, lambda_reg
|
||||
)
|
||||
error = sum_of_square_error(data_x, data_y, len_data, theta, lambda_reg)
|
||||
print(f"At Iteration {i + 1} - Error is {error:.5f}")
|
||||
|
||||
return theta
|
||||
|
||||
|
||||
def mean_absolute_error(predicted_y, original_y):
|
||||
"""Return mean absolute error for error calculation
|
||||
:param predicted_y : contains the output of prediction (result vector)
|
||||
|
@ -94,6 +103,7 @@ def mean_absolute_error(predicted_y, original_y):
|
|||
total = sum(abs(y - predicted_y[i]) for i, y in enumerate(original_y))
|
||||
return total / len(original_y)
|
||||
|
||||
|
||||
def main():
|
||||
"""Driver function"""
|
||||
data = collect_dataset()
|
||||
|
@ -104,12 +114,12 @@ def main():
|
|||
|
||||
lambda_reg = 1.0 # Set your desired regularization parameter
|
||||
theta = run_ridge_regression(data_x, data_y, lambda_reg)
|
||||
|
||||
|
||||
len_result = theta.shape[1]
|
||||
print("Resultant Feature vector : ")
|
||||
for i in range(len_result):
|
||||
print(f"{theta[0, i]:.5f}")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
|
||||
|
|
Loading…
Reference in New Issue
Block a user