mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-02-21 08:42:03 +00:00
Added an algorithm that approximates line lengths (#1692)
* A recursive insertion sort * added doctests and typehints * Added arc length and numerical integration calculators * fixed doc test * Fixed some conversion errors * Fixed some commenting * Deleted numerical integration to allow 1 file per push * Changed string formatting method
This commit is contained in:
parent
99ebd1a018
commit
e25d4248a3
61
maths/line_length.py
Normal file
61
maths/line_length.py
Normal file
|
@ -0,0 +1,61 @@
|
||||||
|
from typing import Callable, Union
|
||||||
|
import math as m
|
||||||
|
|
||||||
|
def line_length(fnc: Callable[[Union[int, float]], Union[int, float]],
|
||||||
|
x_start: Union[int, float],
|
||||||
|
x_end: Union[int, float],
|
||||||
|
steps: int = 100) -> float:
|
||||||
|
|
||||||
|
"""
|
||||||
|
Approximates the arc length of a line segment by treating the curve as a
|
||||||
|
sequence of linear lines and summing their lengths
|
||||||
|
:param fnc: a function which defines a curve
|
||||||
|
:param x_start: left end point to indicate the start of line segment
|
||||||
|
:param x_end: right end point to indicate end of line segment
|
||||||
|
:param steps: an accuracy gauge; more steps increases accuracy
|
||||||
|
:return: a float representing the length of the curve
|
||||||
|
|
||||||
|
>>> def f(x):
|
||||||
|
... return x
|
||||||
|
>>> f"{line_length(f, 0, 1, 10):.6f}"
|
||||||
|
'1.414214'
|
||||||
|
|
||||||
|
>>> def f(x):
|
||||||
|
... return 1
|
||||||
|
>>> f"{line_length(f, -5.5, 4.5):.6f}"
|
||||||
|
'10.000000'
|
||||||
|
|
||||||
|
>>> def f(x):
|
||||||
|
... return m.sin(5 * x) + m.cos(10 * x) + x * x/10
|
||||||
|
>>> f"{line_length(f, 0.0, 10.0, 10000):.6f}"
|
||||||
|
'69.534930'
|
||||||
|
"""
|
||||||
|
|
||||||
|
x1 = x_start
|
||||||
|
fx1 = fnc(x_start)
|
||||||
|
length = 0.0
|
||||||
|
|
||||||
|
for i in range(steps):
|
||||||
|
|
||||||
|
# Approximates curve as a sequence of linear lines and sums their length
|
||||||
|
x2 = (x_end - x_start) / steps + x1
|
||||||
|
fx2 = fnc(x2)
|
||||||
|
length += m.hypot(x2 - x1, fx2 - fx1)
|
||||||
|
|
||||||
|
# Increment step
|
||||||
|
x1 = x2
|
||||||
|
fx1 = fx2
|
||||||
|
|
||||||
|
return length
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
|
||||||
|
def f(x):
|
||||||
|
return m.sin(10*x)
|
||||||
|
|
||||||
|
print("f(x) = sin(10 * x)")
|
||||||
|
print("The length of the curve from x = -10 to x = 10 is:")
|
||||||
|
i = 10
|
||||||
|
while i <= 100000:
|
||||||
|
print(f"With {i} steps: {line_length(f, -10, 10, i)}")
|
||||||
|
i *= 10
|
63
maths/numerical_integration.py
Normal file
63
maths/numerical_integration.py
Normal file
|
@ -0,0 +1,63 @@
|
||||||
|
"""
|
||||||
|
Approximates the area under the curve using the trapezoidal rule
|
||||||
|
"""
|
||||||
|
|
||||||
|
from typing import Callable, Union
|
||||||
|
|
||||||
|
def trapezoidal_area(fnc: Callable[[Union[int, float]], Union[int, float]],
|
||||||
|
x_start: Union[int, float],
|
||||||
|
x_end: Union[int, float],
|
||||||
|
steps: int = 100) -> float:
|
||||||
|
|
||||||
|
"""
|
||||||
|
Treats curve as a collection of linear lines and sums the area of the
|
||||||
|
trapezium shape they form
|
||||||
|
:param fnc: a function which defines a curve
|
||||||
|
:param x_start: left end point to indicate the start of line segment
|
||||||
|
:param x_end: right end point to indicate end of line segment
|
||||||
|
:param steps: an accuracy gauge; more steps increases the accuracy
|
||||||
|
:return: a float representing the length of the curve
|
||||||
|
|
||||||
|
>>> def f(x):
|
||||||
|
... return 5
|
||||||
|
>>> '%.3f' % trapezoidal_area(f, 12.0, 14.0, 1000)
|
||||||
|
'10.000'
|
||||||
|
|
||||||
|
>>> def f(x):
|
||||||
|
... return 9*x**2
|
||||||
|
>>> '%.4f' % trapezoidal_area(f, -4.0, 0, 10000)
|
||||||
|
'192.0000'
|
||||||
|
|
||||||
|
>>> '%.4f' % trapezoidal_area(f, -4.0, 4.0, 10000)
|
||||||
|
'384.0000'
|
||||||
|
"""
|
||||||
|
x1 = x_start
|
||||||
|
fx1 = fnc(x_start)
|
||||||
|
area = 0.0
|
||||||
|
|
||||||
|
for i in range(steps):
|
||||||
|
|
||||||
|
# Approximates small segments of curve as linear and solve
|
||||||
|
# for trapezoidal area
|
||||||
|
x2 = (x_end - x_start)/steps + x1
|
||||||
|
fx2 = fnc(x2)
|
||||||
|
area += abs(fx2 + fx1) * (x2 - x1)/2
|
||||||
|
|
||||||
|
# Increment step
|
||||||
|
x1 = x2
|
||||||
|
fx1 = fx2
|
||||||
|
return area
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
|
||||||
|
def f(x):
|
||||||
|
return x**3
|
||||||
|
|
||||||
|
print("f(x) = x^3")
|
||||||
|
print("The area between the curve, x = -10, x = 10 and the x axis is:")
|
||||||
|
i = 10
|
||||||
|
while i <= 100000:
|
||||||
|
area = trapezoidal_area(f, -5, 5, i)
|
||||||
|
print("with {} steps: {}".format(i, area))
|
||||||
|
i*=10
|
Loading…
Reference in New Issue
Block a user