mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-27 15:01:08 +00:00
Remove unnecessary branch (#4824)
* Algorithm Optimized * Update divide_and_conquer/inversions.py Co-authored-by: John Law <johnlaw.po@gmail.com> * Update divide_and_conquer/inversions.py Co-authored-by: John Law <johnlaw.po@gmail.com> * Update divide_and_conquer/inversions.py Co-authored-by: John Law <johnlaw.po@gmail.com> Co-authored-by: John Law <johnlaw.po@gmail.com>
This commit is contained in:
parent
fadb97609f
commit
e311b02e70
|
@ -2,31 +2,25 @@
|
|||
Given an array-like data structure A[1..n], how many pairs
|
||||
(i, j) for all 1 <= i < j <= n such that A[i] > A[j]? These pairs are
|
||||
called inversions. Counting the number of such inversions in an array-like
|
||||
object is the important. Among other things, counting inversions can help
|
||||
us determine how close a given array is to being sorted
|
||||
|
||||
object is the important. Among other things, counting inversions can help
|
||||
us determine how close a given array is to being sorted.
|
||||
In this implementation, I provide two algorithms, a divide-and-conquer
|
||||
algorithm which runs in nlogn and the brute-force n^2 algorithm.
|
||||
|
||||
"""
|
||||
|
||||
|
||||
def count_inversions_bf(arr):
|
||||
"""
|
||||
Counts the number of inversions using a a naive brute-force algorithm
|
||||
|
||||
Parameters
|
||||
----------
|
||||
arr: arr: array-like, the list containing the items for which the number
|
||||
of inversions is desired. The elements of `arr` must be comparable.
|
||||
|
||||
Returns
|
||||
-------
|
||||
num_inversions: The total number of inversions in `arr`
|
||||
|
||||
Examples
|
||||
---------
|
||||
|
||||
>>> count_inversions_bf([1, 4, 2, 4, 1])
|
||||
4
|
||||
>>> count_inversions_bf([1, 1, 2, 4, 4])
|
||||
|
@ -49,20 +43,16 @@ def count_inversions_bf(arr):
|
|||
def count_inversions_recursive(arr):
|
||||
"""
|
||||
Counts the number of inversions using a divide-and-conquer algorithm
|
||||
|
||||
Parameters
|
||||
-----------
|
||||
arr: array-like, the list containing the items for which the number
|
||||
of inversions is desired. The elements of `arr` must be comparable.
|
||||
|
||||
Returns
|
||||
-------
|
||||
C: a sorted copy of `arr`.
|
||||
num_inversions: int, the total number of inversions in 'arr'
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
>>> count_inversions_recursive([1, 4, 2, 4, 1])
|
||||
([1, 1, 2, 4, 4], 4)
|
||||
>>> count_inversions_recursive([1, 1, 2, 4, 4])
|
||||
|
@ -72,40 +62,34 @@ def count_inversions_recursive(arr):
|
|||
"""
|
||||
if len(arr) <= 1:
|
||||
return arr, 0
|
||||
else:
|
||||
mid = len(arr) // 2
|
||||
P = arr[0:mid]
|
||||
Q = arr[mid:]
|
||||
mid = len(arr) // 2
|
||||
P = arr[0:mid]
|
||||
Q = arr[mid:]
|
||||
|
||||
A, inversion_p = count_inversions_recursive(P)
|
||||
B, inversions_q = count_inversions_recursive(Q)
|
||||
C, cross_inversions = _count_cross_inversions(A, B)
|
||||
A, inversion_p = count_inversions_recursive(P)
|
||||
B, inversions_q = count_inversions_recursive(Q)
|
||||
C, cross_inversions = _count_cross_inversions(A, B)
|
||||
|
||||
num_inversions = inversion_p + inversions_q + cross_inversions
|
||||
return C, num_inversions
|
||||
num_inversions = inversion_p + inversions_q + cross_inversions
|
||||
return C, num_inversions
|
||||
|
||||
|
||||
def _count_cross_inversions(P, Q):
|
||||
"""
|
||||
Counts the inversions across two sorted arrays.
|
||||
And combine the two arrays into one sorted array
|
||||
|
||||
For all 1<= i<=len(P) and for all 1 <= j <= len(Q),
|
||||
if P[i] > Q[j], then (i, j) is a cross inversion
|
||||
|
||||
Parameters
|
||||
----------
|
||||
P: array-like, sorted in non-decreasing order
|
||||
Q: array-like, sorted in non-decreasing order
|
||||
|
||||
Returns
|
||||
------
|
||||
R: array-like, a sorted array of the elements of `P` and `Q`
|
||||
num_inversion: int, the number of inversions across `P` and `Q`
|
||||
|
||||
Examples
|
||||
--------
|
||||
|
||||
>>> _count_cross_inversions([1, 2, 3], [0, 2, 5])
|
||||
([0, 1, 2, 2, 3, 5], 4)
|
||||
>>> _count_cross_inversions([1, 2, 3], [3, 4, 5])
|
||||
|
|
Loading…
Reference in New Issue
Block a user