mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 08:17:01 +00:00
Reimplement polynomial_regression.py (#8889)
* Reimplement polynomial_regression.py Rename machine_learning/polymonial_regression.py to machine_learning/polynomial_regression.py Reimplement machine_learning/polynomial_regression.py using numpy because the old original implementation was just a how-to on doing polynomial regression using sklearn Add detailed function documentation, doctests, and algorithm explanation * updating DIRECTORY.md * Fix matrix formatting in docstrings * Try to fix failing doctest * Debugging failing doctest * Fix failing doctest attempt 2 * Remove unnecessary return value descriptions in docstrings * Readd placeholder doctest for main function * Fix typo in algorithm description --------- Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
This commit is contained in:
parent
4a83e3f0b1
commit
e406801f9e
|
@ -511,7 +511,7 @@
|
|||
* Lstm
|
||||
* [Lstm Prediction](machine_learning/lstm/lstm_prediction.py)
|
||||
* [Multilayer Perceptron Classifier](machine_learning/multilayer_perceptron_classifier.py)
|
||||
* [Polymonial Regression](machine_learning/polymonial_regression.py)
|
||||
* [Polynomial Regression](machine_learning/polynomial_regression.py)
|
||||
* [Scoring Functions](machine_learning/scoring_functions.py)
|
||||
* [Self Organizing Map](machine_learning/self_organizing_map.py)
|
||||
* [Sequential Minimum Optimization](machine_learning/sequential_minimum_optimization.py)
|
||||
|
|
|
@ -1,44 +0,0 @@
|
|||
import pandas as pd
|
||||
from matplotlib import pyplot as plt
|
||||
from sklearn.linear_model import LinearRegression
|
||||
|
||||
# Splitting the dataset into the Training set and Test set
|
||||
from sklearn.model_selection import train_test_split
|
||||
|
||||
# Fitting Polynomial Regression to the dataset
|
||||
from sklearn.preprocessing import PolynomialFeatures
|
||||
|
||||
# Importing the dataset
|
||||
dataset = pd.read_csv(
|
||||
"https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/"
|
||||
"position_salaries.csv"
|
||||
)
|
||||
X = dataset.iloc[:, 1:2].values
|
||||
y = dataset.iloc[:, 2].values
|
||||
|
||||
|
||||
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
|
||||
|
||||
|
||||
poly_reg = PolynomialFeatures(degree=4)
|
||||
X_poly = poly_reg.fit_transform(X)
|
||||
pol_reg = LinearRegression()
|
||||
pol_reg.fit(X_poly, y)
|
||||
|
||||
|
||||
# Visualizing the Polymonial Regression results
|
||||
def viz_polymonial():
|
||||
plt.scatter(X, y, color="red")
|
||||
plt.plot(X, pol_reg.predict(poly_reg.fit_transform(X)), color="blue")
|
||||
plt.title("Truth or Bluff (Linear Regression)")
|
||||
plt.xlabel("Position level")
|
||||
plt.ylabel("Salary")
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
viz_polymonial()
|
||||
|
||||
# Predicting a new result with Polymonial Regression
|
||||
pol_reg.predict(poly_reg.fit_transform([[5.5]]))
|
||||
# output should be 132148.43750003
|
213
machine_learning/polynomial_regression.py
Normal file
213
machine_learning/polynomial_regression.py
Normal file
|
@ -0,0 +1,213 @@
|
|||
"""
|
||||
Polynomial regression is a type of regression analysis that models the relationship
|
||||
between a predictor x and the response y as an mth-degree polynomial:
|
||||
|
||||
y = β₀ + β₁x + β₂x² + ... + βₘxᵐ + ε
|
||||
|
||||
By treating x, x², ..., xᵐ as distinct variables, we see that polynomial regression is a
|
||||
special case of multiple linear regression. Therefore, we can use ordinary least squares
|
||||
(OLS) estimation to estimate the vector of model parameters β = (β₀, β₁, β₂, ..., βₘ)
|
||||
for polynomial regression:
|
||||
|
||||
β = (XᵀX)⁻¹Xᵀy = X⁺y
|
||||
|
||||
where X is the design matrix, y is the response vector, and X⁺ denotes the Moore–Penrose
|
||||
pseudoinverse of X. In the case of polynomial regression, the design matrix is
|
||||
|
||||
|1 x₁ x₁² ⋯ x₁ᵐ|
|
||||
X = |1 x₂ x₂² ⋯ x₂ᵐ|
|
||||
|⋮ ⋮ ⋮ ⋱ ⋮ |
|
||||
|1 xₙ xₙ² ⋯ xₙᵐ|
|
||||
|
||||
In OLS estimation, inverting XᵀX to compute X⁺ can be very numerically unstable. This
|
||||
implementation sidesteps this need to invert XᵀX by computing X⁺ using singular value
|
||||
decomposition (SVD):
|
||||
|
||||
β = VΣ⁺Uᵀy
|
||||
|
||||
where UΣVᵀ is an SVD of X.
|
||||
|
||||
References:
|
||||
- https://en.wikipedia.org/wiki/Polynomial_regression
|
||||
- https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse
|
||||
- https://en.wikipedia.org/wiki/Numerical_methods_for_linear_least_squares
|
||||
- https://en.wikipedia.org/wiki/Singular_value_decomposition
|
||||
"""
|
||||
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
|
||||
class PolynomialRegression:
|
||||
__slots__ = "degree", "params"
|
||||
|
||||
def __init__(self, degree: int) -> None:
|
||||
"""
|
||||
@raises ValueError: if the polynomial degree is negative
|
||||
"""
|
||||
if degree < 0:
|
||||
raise ValueError("Polynomial degree must be non-negative")
|
||||
|
||||
self.degree = degree
|
||||
self.params = None
|
||||
|
||||
@staticmethod
|
||||
def _design_matrix(data: np.ndarray, degree: int) -> np.ndarray:
|
||||
"""
|
||||
Constructs a polynomial regression design matrix for the given input data. For
|
||||
input data x = (x₁, x₂, ..., xₙ) and polynomial degree m, the design matrix is
|
||||
the Vandermonde matrix
|
||||
|
||||
|1 x₁ x₁² ⋯ x₁ᵐ|
|
||||
X = |1 x₂ x₂² ⋯ x₂ᵐ|
|
||||
|⋮ ⋮ ⋮ ⋱ ⋮ |
|
||||
|1 xₙ xₙ² ⋯ xₙᵐ|
|
||||
|
||||
Reference: https://en.wikipedia.org/wiki/Vandermonde_matrix
|
||||
|
||||
@param data: the input predictor values x, either for model fitting or for
|
||||
prediction
|
||||
@param degree: the polynomial degree m
|
||||
@returns: the Vandermonde matrix X (see above)
|
||||
@raises ValueError: if input data is not N x 1
|
||||
|
||||
>>> x = np.array([0, 1, 2])
|
||||
>>> PolynomialRegression._design_matrix(x, degree=0)
|
||||
array([[1],
|
||||
[1],
|
||||
[1]])
|
||||
>>> PolynomialRegression._design_matrix(x, degree=1)
|
||||
array([[1, 0],
|
||||
[1, 1],
|
||||
[1, 2]])
|
||||
>>> PolynomialRegression._design_matrix(x, degree=2)
|
||||
array([[1, 0, 0],
|
||||
[1, 1, 1],
|
||||
[1, 2, 4]])
|
||||
>>> PolynomialRegression._design_matrix(x, degree=3)
|
||||
array([[1, 0, 0, 0],
|
||||
[1, 1, 1, 1],
|
||||
[1, 2, 4, 8]])
|
||||
>>> PolynomialRegression._design_matrix(np.array([[0, 0], [0 , 0]]), degree=3)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Data must have dimensions N x 1
|
||||
"""
|
||||
rows, *remaining = data.shape
|
||||
if remaining:
|
||||
raise ValueError("Data must have dimensions N x 1")
|
||||
|
||||
return np.vander(data, N=degree + 1, increasing=True)
|
||||
|
||||
def fit(self, x_train: np.ndarray, y_train: np.ndarray) -> None:
|
||||
"""
|
||||
Computes the polynomial regression model parameters using ordinary least squares
|
||||
(OLS) estimation:
|
||||
|
||||
β = (XᵀX)⁻¹Xᵀy = X⁺y
|
||||
|
||||
where X⁺ denotes the Moore–Penrose pseudoinverse of the design matrix X. This
|
||||
function computes X⁺ using singular value decomposition (SVD).
|
||||
|
||||
References:
|
||||
- https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse
|
||||
- https://en.wikipedia.org/wiki/Singular_value_decomposition
|
||||
- https://en.wikipedia.org/wiki/Multicollinearity
|
||||
|
||||
@param x_train: the predictor values x for model fitting
|
||||
@param y_train: the response values y for model fitting
|
||||
@raises ArithmeticError: if X isn't full rank, then XᵀX is singular and β
|
||||
doesn't exist
|
||||
|
||||
>>> x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
|
||||
>>> y = x**3 - 2 * x**2 + 3 * x - 5
|
||||
>>> poly_reg = PolynomialRegression(degree=3)
|
||||
>>> poly_reg.fit(x, y)
|
||||
>>> poly_reg.params
|
||||
array([-5., 3., -2., 1.])
|
||||
>>> poly_reg = PolynomialRegression(degree=20)
|
||||
>>> poly_reg.fit(x, y)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ArithmeticError: Design matrix is not full rank, can't compute coefficients
|
||||
|
||||
Make sure errors don't grow too large:
|
||||
>>> coefs = np.array([-250, 50, -2, 36, 20, -12, 10, 2, -1, -15, 1])
|
||||
>>> y = PolynomialRegression._design_matrix(x, len(coefs) - 1) @ coefs
|
||||
>>> poly_reg = PolynomialRegression(degree=len(coefs) - 1)
|
||||
>>> poly_reg.fit(x, y)
|
||||
>>> np.allclose(poly_reg.params, coefs, atol=10e-3)
|
||||
True
|
||||
"""
|
||||
X = PolynomialRegression._design_matrix(x_train, self.degree) # noqa: N806
|
||||
_, cols = X.shape
|
||||
if np.linalg.matrix_rank(X) < cols:
|
||||
raise ArithmeticError(
|
||||
"Design matrix is not full rank, can't compute coefficients"
|
||||
)
|
||||
|
||||
# np.linalg.pinv() computes the Moore–Penrose pseudoinverse using SVD
|
||||
self.params = np.linalg.pinv(X) @ y_train
|
||||
|
||||
def predict(self, data: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
Computes the predicted response values y for the given input data by
|
||||
constructing the design matrix X and evaluating y = Xβ.
|
||||
|
||||
@param data: the predictor values x for prediction
|
||||
@returns: the predicted response values y = Xβ
|
||||
@raises ArithmeticError: if this function is called before the model
|
||||
parameters are fit
|
||||
|
||||
>>> x = np.array([0, 1, 2, 3, 4])
|
||||
>>> y = x**3 - 2 * x**2 + 3 * x - 5
|
||||
>>> poly_reg = PolynomialRegression(degree=3)
|
||||
>>> poly_reg.fit(x, y)
|
||||
>>> poly_reg.predict(np.array([-1]))
|
||||
array([-11.])
|
||||
>>> poly_reg.predict(np.array([-2]))
|
||||
array([-27.])
|
||||
>>> poly_reg.predict(np.array([6]))
|
||||
array([157.])
|
||||
>>> PolynomialRegression(degree=3).predict(x)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ArithmeticError: Predictor hasn't been fit yet
|
||||
"""
|
||||
if self.params is None:
|
||||
raise ArithmeticError("Predictor hasn't been fit yet")
|
||||
|
||||
return PolynomialRegression._design_matrix(data, self.degree) @ self.params
|
||||
|
||||
|
||||
def main() -> None:
|
||||
"""
|
||||
Fit a polynomial regression model to predict fuel efficiency using seaborn's mpg
|
||||
dataset
|
||||
|
||||
>>> pass # Placeholder, function is only for demo purposes
|
||||
"""
|
||||
import seaborn as sns
|
||||
|
||||
mpg_data = sns.load_dataset("mpg")
|
||||
|
||||
poly_reg = PolynomialRegression(degree=2)
|
||||
poly_reg.fit(mpg_data.weight, mpg_data.mpg)
|
||||
|
||||
weight_sorted = np.sort(mpg_data.weight)
|
||||
predictions = poly_reg.predict(weight_sorted)
|
||||
|
||||
plt.scatter(mpg_data.weight, mpg_data.mpg, color="gray", alpha=0.5)
|
||||
plt.plot(weight_sorted, predictions, color="red", linewidth=3)
|
||||
plt.title("Predicting Fuel Efficiency Using Polynomial Regression")
|
||||
plt.xlabel("Weight (lbs)")
|
||||
plt.ylabel("Fuel Efficiency (mpg)")
|
||||
plt.show()
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
||||
|
||||
main()
|
Loading…
Reference in New Issue
Block a user