Reimplement polynomial_regression.py (#8889)

* Reimplement polynomial_regression.py

Rename machine_learning/polymonial_regression.py to
machine_learning/polynomial_regression.py

Reimplement machine_learning/polynomial_regression.py using numpy
because the old original implementation was just a how-to on doing
polynomial regression using sklearn

Add detailed function documentation, doctests, and algorithm
explanation

* updating DIRECTORY.md

* Fix matrix formatting in docstrings

* Try to fix failing doctest

* Debugging failing doctest

* Fix failing doctest attempt 2

* Remove unnecessary return value descriptions in docstrings

* Readd placeholder doctest for main function

* Fix typo in algorithm description

---------

Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
This commit is contained in:
Tianyi Zheng 2023-07-28 11:17:46 -07:00 committed by GitHub
parent 4a83e3f0b1
commit e406801f9e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
3 changed files with 214 additions and 45 deletions

View File

@ -511,7 +511,7 @@
* Lstm * Lstm
* [Lstm Prediction](machine_learning/lstm/lstm_prediction.py) * [Lstm Prediction](machine_learning/lstm/lstm_prediction.py)
* [Multilayer Perceptron Classifier](machine_learning/multilayer_perceptron_classifier.py) * [Multilayer Perceptron Classifier](machine_learning/multilayer_perceptron_classifier.py)
* [Polymonial Regression](machine_learning/polymonial_regression.py) * [Polynomial Regression](machine_learning/polynomial_regression.py)
* [Scoring Functions](machine_learning/scoring_functions.py) * [Scoring Functions](machine_learning/scoring_functions.py)
* [Self Organizing Map](machine_learning/self_organizing_map.py) * [Self Organizing Map](machine_learning/self_organizing_map.py)
* [Sequential Minimum Optimization](machine_learning/sequential_minimum_optimization.py) * [Sequential Minimum Optimization](machine_learning/sequential_minimum_optimization.py)

View File

@ -1,44 +0,0 @@
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.linear_model import LinearRegression
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
# Fitting Polynomial Regression to the dataset
from sklearn.preprocessing import PolynomialFeatures
# Importing the dataset
dataset = pd.read_csv(
"https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/"
"position_salaries.csv"
)
X = dataset.iloc[:, 1:2].values
y = dataset.iloc[:, 2].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
poly_reg = PolynomialFeatures(degree=4)
X_poly = poly_reg.fit_transform(X)
pol_reg = LinearRegression()
pol_reg.fit(X_poly, y)
# Visualizing the Polymonial Regression results
def viz_polymonial():
plt.scatter(X, y, color="red")
plt.plot(X, pol_reg.predict(poly_reg.fit_transform(X)), color="blue")
plt.title("Truth or Bluff (Linear Regression)")
plt.xlabel("Position level")
plt.ylabel("Salary")
plt.show()
if __name__ == "__main__":
viz_polymonial()
# Predicting a new result with Polymonial Regression
pol_reg.predict(poly_reg.fit_transform([[5.5]]))
# output should be 132148.43750003

View File

@ -0,0 +1,213 @@
"""
Polynomial regression is a type of regression analysis that models the relationship
between a predictor x and the response y as an mth-degree polynomial:
y = β₀ + β₁x + β₂x² + ... + βₘxᵐ + ε
By treating x, , ..., xᵐ as distinct variables, we see that polynomial regression is a
special case of multiple linear regression. Therefore, we can use ordinary least squares
(OLS) estimation to estimate the vector of model parameters β = (β₀, β₁, β₂, ..., βₘ)
for polynomial regression:
β = (XᵀX)¹Xᵀy = Xy
where X is the design matrix, y is the response vector, and X denotes the MoorePenrose
pseudoinverse of X. In the case of polynomial regression, the design matrix is
|1 x₁ x₁² x₁ᵐ|
X = |1 x₂ x₂² x₂ᵐ|
| |
|1 xₙ xₙ² xₙᵐ|
In OLS estimation, inverting XᵀX to compute X can be very numerically unstable. This
implementation sidesteps this need to invert XᵀX by computing X using singular value
decomposition (SVD):
β = Uᵀy
where UΣVᵀ is an SVD of X.
References:
- https://en.wikipedia.org/wiki/Polynomial_regression
- https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse
- https://en.wikipedia.org/wiki/Numerical_methods_for_linear_least_squares
- https://en.wikipedia.org/wiki/Singular_value_decomposition
"""
import matplotlib.pyplot as plt
import numpy as np
class PolynomialRegression:
__slots__ = "degree", "params"
def __init__(self, degree: int) -> None:
"""
@raises ValueError: if the polynomial degree is negative
"""
if degree < 0:
raise ValueError("Polynomial degree must be non-negative")
self.degree = degree
self.params = None
@staticmethod
def _design_matrix(data: np.ndarray, degree: int) -> np.ndarray:
"""
Constructs a polynomial regression design matrix for the given input data. For
input data x = (x₁, x₂, ..., xₙ) and polynomial degree m, the design matrix is
the Vandermonde matrix
|1 x₁ x₁² x₁ᵐ|
X = |1 x₂ x₂² x₂ᵐ|
| |
|1 xₙ xₙ² xₙᵐ|
Reference: https://en.wikipedia.org/wiki/Vandermonde_matrix
@param data: the input predictor values x, either for model fitting or for
prediction
@param degree: the polynomial degree m
@returns: the Vandermonde matrix X (see above)
@raises ValueError: if input data is not N x 1
>>> x = np.array([0, 1, 2])
>>> PolynomialRegression._design_matrix(x, degree=0)
array([[1],
[1],
[1]])
>>> PolynomialRegression._design_matrix(x, degree=1)
array([[1, 0],
[1, 1],
[1, 2]])
>>> PolynomialRegression._design_matrix(x, degree=2)
array([[1, 0, 0],
[1, 1, 1],
[1, 2, 4]])
>>> PolynomialRegression._design_matrix(x, degree=3)
array([[1, 0, 0, 0],
[1, 1, 1, 1],
[1, 2, 4, 8]])
>>> PolynomialRegression._design_matrix(np.array([[0, 0], [0 , 0]]), degree=3)
Traceback (most recent call last):
...
ValueError: Data must have dimensions N x 1
"""
rows, *remaining = data.shape
if remaining:
raise ValueError("Data must have dimensions N x 1")
return np.vander(data, N=degree + 1, increasing=True)
def fit(self, x_train: np.ndarray, y_train: np.ndarray) -> None:
"""
Computes the polynomial regression model parameters using ordinary least squares
(OLS) estimation:
β = (XᵀX)¹Xᵀy = Xy
where X denotes the MoorePenrose pseudoinverse of the design matrix X. This
function computes X using singular value decomposition (SVD).
References:
- https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse
- https://en.wikipedia.org/wiki/Singular_value_decomposition
- https://en.wikipedia.org/wiki/Multicollinearity
@param x_train: the predictor values x for model fitting
@param y_train: the response values y for model fitting
@raises ArithmeticError: if X isn't full rank, then XᵀX is singular and β
doesn't exist
>>> x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
>>> y = x**3 - 2 * x**2 + 3 * x - 5
>>> poly_reg = PolynomialRegression(degree=3)
>>> poly_reg.fit(x, y)
>>> poly_reg.params
array([-5., 3., -2., 1.])
>>> poly_reg = PolynomialRegression(degree=20)
>>> poly_reg.fit(x, y)
Traceback (most recent call last):
...
ArithmeticError: Design matrix is not full rank, can't compute coefficients
Make sure errors don't grow too large:
>>> coefs = np.array([-250, 50, -2, 36, 20, -12, 10, 2, -1, -15, 1])
>>> y = PolynomialRegression._design_matrix(x, len(coefs) - 1) @ coefs
>>> poly_reg = PolynomialRegression(degree=len(coefs) - 1)
>>> poly_reg.fit(x, y)
>>> np.allclose(poly_reg.params, coefs, atol=10e-3)
True
"""
X = PolynomialRegression._design_matrix(x_train, self.degree) # noqa: N806
_, cols = X.shape
if np.linalg.matrix_rank(X) < cols:
raise ArithmeticError(
"Design matrix is not full rank, can't compute coefficients"
)
# np.linalg.pinv() computes the MoorePenrose pseudoinverse using SVD
self.params = np.linalg.pinv(X) @ y_train
def predict(self, data: np.ndarray) -> np.ndarray:
"""
Computes the predicted response values y for the given input data by
constructing the design matrix X and evaluating y = .
@param data: the predictor values x for prediction
@returns: the predicted response values y =
@raises ArithmeticError: if this function is called before the model
parameters are fit
>>> x = np.array([0, 1, 2, 3, 4])
>>> y = x**3 - 2 * x**2 + 3 * x - 5
>>> poly_reg = PolynomialRegression(degree=3)
>>> poly_reg.fit(x, y)
>>> poly_reg.predict(np.array([-1]))
array([-11.])
>>> poly_reg.predict(np.array([-2]))
array([-27.])
>>> poly_reg.predict(np.array([6]))
array([157.])
>>> PolynomialRegression(degree=3).predict(x)
Traceback (most recent call last):
...
ArithmeticError: Predictor hasn't been fit yet
"""
if self.params is None:
raise ArithmeticError("Predictor hasn't been fit yet")
return PolynomialRegression._design_matrix(data, self.degree) @ self.params
def main() -> None:
"""
Fit a polynomial regression model to predict fuel efficiency using seaborn's mpg
dataset
>>> pass # Placeholder, function is only for demo purposes
"""
import seaborn as sns
mpg_data = sns.load_dataset("mpg")
poly_reg = PolynomialRegression(degree=2)
poly_reg.fit(mpg_data.weight, mpg_data.mpg)
weight_sorted = np.sort(mpg_data.weight)
predictions = poly_reg.predict(weight_sorted)
plt.scatter(mpg_data.weight, mpg_data.mpg, color="gray", alpha=0.5)
plt.plot(weight_sorted, predictions, color="red", linewidth=3)
plt.title("Predicting Fuel Efficiency Using Polynomial Regression")
plt.xlabel("Weight (lbs)")
plt.ylabel("Fuel Efficiency (mpg)")
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod()
main()