From e41d04112fcaaceb286b0fd6d55a162af0893593 Mon Sep 17 00:00:00 2001 From: Joyce Date: Wed, 7 Oct 2020 17:53:14 +0800 Subject: [PATCH] Fixes: #2630 Add doctests and support for negative numbers (#2626) * add type hints to math/extended euclid * math/extended euclid - add doctest * math/extended euclid: remove manual doctest * change algorithm for negative numbers * improve naming of variables * Update extended_euclidean_algorithm.py Co-authored-by: Dhruv --- maths/extended_euclidean_algorithm.py | 87 +++++++++++++++------------ 1 file changed, 50 insertions(+), 37 deletions(-) diff --git a/maths/extended_euclidean_algorithm.py b/maths/extended_euclidean_algorithm.py index fe81bcfaf..e7087636c 100644 --- a/maths/extended_euclidean_algorithm.py +++ b/maths/extended_euclidean_algorithm.py @@ -3,59 +3,72 @@ Extended Euclidean Algorithm. Finds 2 numbers a and b such that it satisfies the equation am + bn = gcd(m, n) (a.k.a Bezout's Identity) + +https://en.wikipedia.org/wiki/Extended_Euclidean_algorithm """ # @Author: S. Sharma # @Date: 2019-02-25T12:08:53-06:00 # @Email: silentcat@protonmail.com -# @Last modified by: PatOnTheBack -# @Last modified time: 2019-07-05 +# @Last modified by: pikulet +# @Last modified time: 2020-10-02 import sys +from typing import Tuple -def extended_euclidean_algorithm(m, n): +def extended_euclidean_algorithm(a: int, b: int) -> Tuple[int, int]: """ Extended Euclidean Algorithm. Finds 2 numbers a and b such that it satisfies the equation am + bn = gcd(m, n) (a.k.a Bezout's Identity) + + >>> extended_euclidean_algorithm(1, 24) + (1, 0) + + >>> extended_euclidean_algorithm(8, 14) + (2, -1) + + >>> extended_euclidean_algorithm(240, 46) + (-9, 47) + + >>> extended_euclidean_algorithm(1, -4) + (1, 0) + + >>> extended_euclidean_algorithm(-2, -4) + (-1, 0) + + >>> extended_euclidean_algorithm(0, -4) + (0, -1) + + >>> extended_euclidean_algorithm(2, 0) + (1, 0) + """ - a = 0 - a_prime = 1 - b = 1 - b_prime = 0 - q = 0 - r = 0 - if m > n: - c = m - d = n - else: - c = n - d = m + # base cases + if abs(a) == 1: + return a, 0 + elif abs(b) == 1: + return 0, b - while True: - q = int(c / d) - r = c % d - if r == 0: - break - c = d - d = r + old_remainder, remainder = a, b + old_coeff_a, coeff_a = 1, 0 + old_coeff_b, coeff_b = 0, 1 - t = a_prime - a_prime = a - a = t - q * a + while remainder != 0: + quotient = old_remainder // remainder + old_remainder, remainder = remainder, old_remainder - quotient * remainder + old_coeff_a, coeff_a = coeff_a, old_coeff_a - quotient * coeff_a + old_coeff_b, coeff_b = coeff_b, old_coeff_b - quotient * coeff_b - t = b_prime - b_prime = b - b = t - q * b + # sign correction for negative numbers + if a < 0: + old_coeff_a = -old_coeff_a + if b < 0: + old_coeff_b = -old_coeff_b - pair = None - if m > n: - pair = (a, b) - else: - pair = (b, a) - return pair + return old_coeff_a, old_coeff_b def main(): @@ -63,9 +76,9 @@ def main(): if len(sys.argv) < 3: print("2 integer arguments required") exit(1) - m = int(sys.argv[1]) - n = int(sys.argv[2]) - print(extended_euclidean_algorithm(m, n)) + a = int(sys.argv[1]) + b = int(sys.argv[2]) + print(extended_euclidean_algorithm(a, b)) if __name__ == "__main__":