diff --git a/DIRECTORY.md b/DIRECTORY.md index 25272af4a..2786e1f82 100644 --- a/DIRECTORY.md +++ b/DIRECTORY.md @@ -153,6 +153,7 @@ * [Binary Tree Mirror](data_structures/binary_tree/binary_tree_mirror.py) * [Binary Tree Traversals](data_structures/binary_tree/binary_tree_traversals.py) * [Fenwick Tree](data_structures/binary_tree/fenwick_tree.py) + * [Inorder Tree Traversal 2022](data_structures/binary_tree/inorder_tree_traversal_2022.py) * [Lazy Segment Tree](data_structures/binary_tree/lazy_segment_tree.py) * [Lowest Common Ancestor](data_structures/binary_tree/lowest_common_ancestor.py) * [Maximum Fenwick Tree](data_structures/binary_tree/maximum_fenwick_tree.py) diff --git a/data_structures/binary_tree/inorder_tree_traversal_2022.py b/data_structures/binary_tree/inorder_tree_traversal_2022.py new file mode 100644 index 000000000..08001738f --- /dev/null +++ b/data_structures/binary_tree/inorder_tree_traversal_2022.py @@ -0,0 +1,83 @@ +""" +Illustrate how to implement inorder traversal in binary search tree. +Author: Gurneet Singh +https://www.geeksforgeeks.org/tree-traversals-inorder-preorder-and-postorder/ +""" + + +class BinaryTreeNode: + """Defining the structure of BinaryTreeNode""" + + def __init__(self, data: int) -> None: + self.data = data + self.left_child: BinaryTreeNode | None = None + self.right_child: BinaryTreeNode | None = None + + +def insert(node: BinaryTreeNode | None, new_value: int) -> BinaryTreeNode | None: + """ + If the binary search tree is empty, make a new node and declare it as root. + >>> node_a = BinaryTreeNode(12345) + >>> node_b = insert(node_a, 67890) + >>> node_a.left_child == node_b.left_child + True + >>> node_a.right_child == node_b.right_child + True + >>> node_a.data == node_b.data + True + """ + if node is None: + node = BinaryTreeNode(new_value) + return node + + # binary search tree is not empty, + # so we will insert it into the tree + # if new_value is less than value of data in node, + # add it to left subtree and proceed recursively + if new_value < node.data: + node.left_child = insert(node.left_child, new_value) + else: + # if new_value is greater than value of data in node, + # add it to right subtree and proceed recursively + node.right_child = insert(node.right_child, new_value) + return node + + +def inorder(node: None | BinaryTreeNode) -> list[int]: # if node is None,return + """ + >>> inorder(make_tree()) + [6, 10, 14, 15, 20, 25, 60] + """ + if node: + inorder_array = inorder(node.left_child) + inorder_array = inorder_array + [node.data] + inorder_array = inorder_array + inorder(node.right_child) + else: + inorder_array = [] + return inorder_array + + +def make_tree() -> BinaryTreeNode | None: + + root = insert(None, 15) + insert(root, 10) + insert(root, 25) + insert(root, 6) + insert(root, 14) + insert(root, 20) + insert(root, 60) + return root + + +def main() -> None: + # main function + root = make_tree() + print("Printing values of binary search tree in Inorder Traversal.") + inorder(root) + + +if __name__ == "__main__": + import doctest + + doctest.testmod() + main()