Dynamic programming/matrix chain multiplication (#10562)

* updating DIRECTORY.md

* spell changes

* updating DIRECTORY.md

* real world applications

* updating DIRECTORY.md

* Update matrix_chain_multiplication.py

Add a non-dp solution with benchmarks.

* [pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci

* Update matrix_chain_multiplication.py

* Update matrix_chain_multiplication.py

* Update matrix_chain_multiplication.py

---------

Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
Co-authored-by: Pooja Sharma <poojasharma@MyBigMac.local>
Co-authored-by: Christian Clauss <cclauss@me.com>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
Pooja Sharma 2023-10-16 05:02:45 +05:30 committed by GitHub
parent d00888de76
commit e6aae1cf66
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
2 changed files with 147 additions and 1 deletions

View File

@ -182,6 +182,7 @@
* [Permutations](data_structures/arrays/permutations.py) * [Permutations](data_structures/arrays/permutations.py)
* [Prefix Sum](data_structures/arrays/prefix_sum.py) * [Prefix Sum](data_structures/arrays/prefix_sum.py)
* [Product Sum](data_structures/arrays/product_sum.py) * [Product Sum](data_structures/arrays/product_sum.py)
* [Sparse Table](data_structures/arrays/sparse_table.py)
* Binary Tree * Binary Tree
* [Avl Tree](data_structures/binary_tree/avl_tree.py) * [Avl Tree](data_structures/binary_tree/avl_tree.py)
* [Basic Binary Tree](data_structures/binary_tree/basic_binary_tree.py) * [Basic Binary Tree](data_structures/binary_tree/basic_binary_tree.py)
@ -340,6 +341,7 @@
* [Longest Increasing Subsequence O(Nlogn)](dynamic_programming/longest_increasing_subsequence_o(nlogn).py) * [Longest Increasing Subsequence O(Nlogn)](dynamic_programming/longest_increasing_subsequence_o(nlogn).py)
* [Longest Palindromic Subsequence](dynamic_programming/longest_palindromic_subsequence.py) * [Longest Palindromic Subsequence](dynamic_programming/longest_palindromic_subsequence.py)
* [Longest Sub Array](dynamic_programming/longest_sub_array.py) * [Longest Sub Array](dynamic_programming/longest_sub_array.py)
* [Matrix Chain Multiplication](dynamic_programming/matrix_chain_multiplication.py)
* [Matrix Chain Order](dynamic_programming/matrix_chain_order.py) * [Matrix Chain Order](dynamic_programming/matrix_chain_order.py)
* [Max Non Adjacent Sum](dynamic_programming/max_non_adjacent_sum.py) * [Max Non Adjacent Sum](dynamic_programming/max_non_adjacent_sum.py)
* [Max Product Subarray](dynamic_programming/max_product_subarray.py) * [Max Product Subarray](dynamic_programming/max_product_subarray.py)
@ -370,6 +372,7 @@
* [Builtin Voltage](electronics/builtin_voltage.py) * [Builtin Voltage](electronics/builtin_voltage.py)
* [Carrier Concentration](electronics/carrier_concentration.py) * [Carrier Concentration](electronics/carrier_concentration.py)
* [Charging Capacitor](electronics/charging_capacitor.py) * [Charging Capacitor](electronics/charging_capacitor.py)
* [Charging Inductor](electronics/charging_inductor.py)
* [Circular Convolution](electronics/circular_convolution.py) * [Circular Convolution](electronics/circular_convolution.py)
* [Coulombs Law](electronics/coulombs_law.py) * [Coulombs Law](electronics/coulombs_law.py)
* [Electric Conductivity](electronics/electric_conductivity.py) * [Electric Conductivity](electronics/electric_conductivity.py)
@ -524,6 +527,7 @@
* [Simplex](linear_programming/simplex.py) * [Simplex](linear_programming/simplex.py)
## Machine Learning ## Machine Learning
* [Apriori Algorithm](machine_learning/apriori_algorithm.py)
* [Astar](machine_learning/astar.py) * [Astar](machine_learning/astar.py)
* [Data Transformations](machine_learning/data_transformations.py) * [Data Transformations](machine_learning/data_transformations.py)
* [Decision Tree](machine_learning/decision_tree.py) * [Decision Tree](machine_learning/decision_tree.py)
@ -554,7 +558,6 @@
* [Word Frequency Functions](machine_learning/word_frequency_functions.py) * [Word Frequency Functions](machine_learning/word_frequency_functions.py)
* [Xgboost Classifier](machine_learning/xgboost_classifier.py) * [Xgboost Classifier](machine_learning/xgboost_classifier.py)
* [Xgboost Regressor](machine_learning/xgboost_regressor.py) * [Xgboost Regressor](machine_learning/xgboost_regressor.py)
* [Apriori Algorithm](machine_learning/apriori_algorithm.py)
## Maths ## Maths
* [Abs](maths/abs.py) * [Abs](maths/abs.py)

View File

@ -0,0 +1,143 @@
"""
Find the minimum number of multiplications needed to multiply chain of matrices.
Reference: https://www.geeksforgeeks.org/matrix-chain-multiplication-dp-8/
The algorithm has interesting real-world applications. Example:
1. Image transformations in Computer Graphics as images are composed of matrix.
2. Solve complex polynomial equations in the field of algebra using least processing
power.
3. Calculate overall impact of macroeconomic decisions as economic equations involve a
number of variables.
4. Self-driving car navigation can be made more accurate as matrix multiplication can
accurately determine position and orientation of obstacles in short time.
Python doctests can be run with the following command:
python -m doctest -v matrix_chain_multiply.py
Given a sequence arr[] that represents chain of 2D matrices such that the dimension of
the ith matrix is arr[i-1]*arr[i].
So suppose arr = [40, 20, 30, 10, 30] means we have 4 matrices of dimensions
40*20, 20*30, 30*10 and 10*30.
matrix_chain_multiply() returns an integer denoting minimum number of multiplications to
multiply the chain.
We do not need to perform actual multiplication here.
We only need to decide the order in which to perform the multiplication.
Hints:
1. Number of multiplications (ie cost) to multiply 2 matrices
of size m*p and p*n is m*p*n.
2. Cost of matrix multiplication is associative ie (M1*M2)*M3 != M1*(M2*M3)
3. Matrix multiplication is not commutative. So, M1*M2 does not mean M2*M1 can be done.
4. To determine the required order, we can try different combinations.
So, this problem has overlapping sub-problems and can be solved using recursion.
We use Dynamic Programming for optimal time complexity.
Example input:
arr = [40, 20, 30, 10, 30]
output: 26000
"""
from collections.abc import Iterator
from contextlib import contextmanager
from functools import cache
from sys import maxsize
def matrix_chain_multiply(arr: list[int]) -> int:
"""
Find the minimum number of multiplcations required to multiply the chain of matrices
Args:
arr: The input array of integers.
Returns:
Minimum number of multiplications needed to multiply the chain
Examples:
>>> matrix_chain_multiply([1, 2, 3, 4, 3])
30
>>> matrix_chain_multiply([10])
0
>>> matrix_chain_multiply([10, 20])
0
>>> matrix_chain_multiply([19, 2, 19])
722
>>> matrix_chain_multiply(list(range(1, 100)))
323398
# >>> matrix_chain_multiply(list(range(1, 251)))
# 2626798
"""
if len(arr) < 2:
return 0
# initialising 2D dp matrix
n = len(arr)
dp = [[maxsize for j in range(n)] for i in range(n)]
# we want minimum cost of multiplication of matrices
# of dimension (i*k) and (k*j). This cost is arr[i-1]*arr[k]*arr[j].
for i in range(n - 1, 0, -1):
for j in range(i, n):
if i == j:
dp[i][j] = 0
continue
for k in range(i, j):
dp[i][j] = min(
dp[i][j], dp[i][k] + dp[k + 1][j] + arr[i - 1] * arr[k] * arr[j]
)
return dp[1][n - 1]
def matrix_chain_order(dims: list[int]) -> int:
"""
Source: https://en.wikipedia.org/wiki/Matrix_chain_multiplication
The dynamic programming solution is faster than cached the recursive solution and
can handle larger inputs.
>>> matrix_chain_order([1, 2, 3, 4, 3])
30
>>> matrix_chain_order([10])
0
>>> matrix_chain_order([10, 20])
0
>>> matrix_chain_order([19, 2, 19])
722
>>> matrix_chain_order(list(range(1, 100)))
323398
# >>> matrix_chain_order(list(range(1, 251))) # Max before RecursionError is raised
# 2626798
"""
@cache
def a(i: int, j: int) -> int:
return min(
(a(i, k) + dims[i] * dims[k] * dims[j] + a(k, j) for k in range(i + 1, j)),
default=0,
)
return a(0, len(dims) - 1)
@contextmanager
def elapsed_time(msg: str) -> Iterator:
# print(f"Starting: {msg}")
from time import perf_counter_ns
start = perf_counter_ns()
yield
print(f"Finished: {msg} in {(perf_counter_ns() - start) / 10 ** 9} seconds.")
if __name__ == "__main__":
import doctest
doctest.testmod()
with elapsed_time("matrix_chain_order"):
print(f"{matrix_chain_order(list(range(1, 251))) = }")
with elapsed_time("matrix_chain_multiply"):
print(f"{matrix_chain_multiply(list(range(1, 251))) = }")
with elapsed_time("matrix_chain_order"):
print(f"{matrix_chain_order(list(range(1, 251))) = }")
with elapsed_time("matrix_chain_multiply"):
print(f"{matrix_chain_multiply(list(range(1, 251))) = }")