mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 08:17:01 +00:00
Simplex algorithm (#8825)
* feat: added simplex.py * added docstrings * Update linear_programming/simplex.py Co-authored-by: Caeden Perelli-Harris <caedenperelliharris@gmail.com> * Update linear_programming/simplex.py Co-authored-by: Caeden Perelli-Harris <caedenperelliharris@gmail.com> * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Update linear_programming/simplex.py Co-authored-by: Caeden Perelli-Harris <caedenperelliharris@gmail.com> * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * ruff fix Co-authored by: CaedenPH <caedenperelliharris@gmail.com> * removed README to add in separate PR * Update linear_programming/simplex.py Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com> * Update linear_programming/simplex.py Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com> * fix class docstring * add comments --------- Co-authored-by: Caeden Perelli-Harris <caedenperelliharris@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Tianyi Zheng <tianyizheng02@gmail.com>
This commit is contained in:
parent
4637986125
commit
e6f89a6b89
311
linear_programming/simplex.py
Normal file
311
linear_programming/simplex.py
Normal file
|
@ -0,0 +1,311 @@
|
|||
"""
|
||||
Python implementation of the simplex algorithm for solving linear programs in
|
||||
tabular form with
|
||||
- `>=`, `<=`, and `=` constraints and
|
||||
- each variable `x1, x2, ...>= 0`.
|
||||
|
||||
See https://gist.github.com/imengus/f9619a568f7da5bc74eaf20169a24d98 for how to
|
||||
convert linear programs to simplex tableaus, and the steps taken in the simplex
|
||||
algorithm.
|
||||
|
||||
Resources:
|
||||
https://en.wikipedia.org/wiki/Simplex_algorithm
|
||||
https://tinyurl.com/simplex4beginners
|
||||
"""
|
||||
from typing import Any
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
class Tableau:
|
||||
"""Operate on simplex tableaus
|
||||
|
||||
>>> t = Tableau(np.array([[-1,-1,0,0,-1],[1,3,1,0,4],[3,1,0,1,4.]]), 2)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: RHS must be > 0
|
||||
"""
|
||||
|
||||
def __init__(self, tableau: np.ndarray, n_vars: int) -> None:
|
||||
# Check if RHS is negative
|
||||
if np.any(tableau[:, -1], where=tableau[:, -1] < 0):
|
||||
raise ValueError("RHS must be > 0")
|
||||
|
||||
self.tableau = tableau
|
||||
self.n_rows, _ = tableau.shape
|
||||
|
||||
# Number of decision variables x1, x2, x3...
|
||||
self.n_vars = n_vars
|
||||
|
||||
# Number of artificial variables to be minimised
|
||||
self.n_art_vars = len(np.where(tableau[self.n_vars : -1] == -1)[0])
|
||||
|
||||
# 2 if there are >= or == constraints (nonstandard), 1 otherwise (std)
|
||||
self.n_stages = (self.n_art_vars > 0) + 1
|
||||
|
||||
# Number of slack variables added to make inequalities into equalities
|
||||
self.n_slack = self.n_rows - self.n_stages
|
||||
|
||||
# Objectives for each stage
|
||||
self.objectives = ["max"]
|
||||
|
||||
# In two stage simplex, first minimise then maximise
|
||||
if self.n_art_vars:
|
||||
self.objectives.append("min")
|
||||
|
||||
self.col_titles = [""]
|
||||
|
||||
# Index of current pivot row and column
|
||||
self.row_idx = None
|
||||
self.col_idx = None
|
||||
|
||||
# Does objective row only contain (non)-negative values?
|
||||
self.stop_iter = False
|
||||
|
||||
@staticmethod
|
||||
def generate_col_titles(*args: int) -> list[str]:
|
||||
"""Generate column titles for tableau of specific dimensions
|
||||
|
||||
>>> Tableau.generate_col_titles(2, 3, 1)
|
||||
['x1', 'x2', 's1', 's2', 's3', 'a1', 'RHS']
|
||||
|
||||
>>> Tableau.generate_col_titles()
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: Must provide n_vars, n_slack, and n_art_vars
|
||||
>>> Tableau.generate_col_titles(-2, 3, 1)
|
||||
Traceback (most recent call last):
|
||||
...
|
||||
ValueError: All arguments must be non-negative integers
|
||||
"""
|
||||
if len(args) != 3:
|
||||
raise ValueError("Must provide n_vars, n_slack, and n_art_vars")
|
||||
|
||||
if not all(x >= 0 and isinstance(x, int) for x in args):
|
||||
raise ValueError("All arguments must be non-negative integers")
|
||||
|
||||
# decision | slack | artificial
|
||||
string_starts = ["x", "s", "a"]
|
||||
titles = []
|
||||
for i in range(3):
|
||||
for j in range(args[i]):
|
||||
titles.append(string_starts[i] + str(j + 1))
|
||||
titles.append("RHS")
|
||||
return titles
|
||||
|
||||
def find_pivot(self, tableau: np.ndarray) -> tuple[Any, Any]:
|
||||
"""Finds the pivot row and column.
|
||||
>>> t = Tableau(np.array([[-2,1,0,0,0], [3,1,1,0,6], [1,2,0,1,7.]]), 2)
|
||||
>>> t.find_pivot(t.tableau)
|
||||
(1, 0)
|
||||
"""
|
||||
objective = self.objectives[-1]
|
||||
|
||||
# Find entries of highest magnitude in objective rows
|
||||
sign = (objective == "min") - (objective == "max")
|
||||
col_idx = np.argmax(sign * tableau[0, : self.n_vars])
|
||||
|
||||
# Choice is only valid if below 0 for maximise, and above for minimise
|
||||
if sign * self.tableau[0, col_idx] <= 0:
|
||||
self.stop_iter = True
|
||||
return 0, 0
|
||||
|
||||
# Pivot row is chosen as having the lowest quotient when elements of
|
||||
# the pivot column divide the right-hand side
|
||||
|
||||
# Slice excluding the objective rows
|
||||
s = slice(self.n_stages, self.n_rows)
|
||||
|
||||
# RHS
|
||||
dividend = tableau[s, -1]
|
||||
|
||||
# Elements of pivot column within slice
|
||||
divisor = tableau[s, col_idx]
|
||||
|
||||
# Array filled with nans
|
||||
nans = np.full(self.n_rows - self.n_stages, np.nan)
|
||||
|
||||
# If element in pivot column is greater than zeron_stages, return
|
||||
# quotient or nan otherwise
|
||||
quotients = np.divide(dividend, divisor, out=nans, where=divisor > 0)
|
||||
|
||||
# Arg of minimum quotient excluding the nan values. n_stages is added
|
||||
# to compensate for earlier exclusion of objective columns
|
||||
row_idx = np.nanargmin(quotients) + self.n_stages
|
||||
return row_idx, col_idx
|
||||
|
||||
def pivot(self, tableau: np.ndarray, row_idx: int, col_idx: int) -> np.ndarray:
|
||||
"""Pivots on value on the intersection of pivot row and column.
|
||||
|
||||
>>> t = Tableau(np.array([[-2,-3,0,0,0],[1,3,1,0,4],[3,1,0,1,4.]]), 2)
|
||||
>>> t.pivot(t.tableau, 1, 0).tolist()
|
||||
... # doctest: +NORMALIZE_WHITESPACE
|
||||
[[0.0, 3.0, 2.0, 0.0, 8.0],
|
||||
[1.0, 3.0, 1.0, 0.0, 4.0],
|
||||
[0.0, -8.0, -3.0, 1.0, -8.0]]
|
||||
"""
|
||||
# Avoid changes to original tableau
|
||||
piv_row = tableau[row_idx].copy()
|
||||
|
||||
piv_val = piv_row[col_idx]
|
||||
|
||||
# Entry becomes 1
|
||||
piv_row *= 1 / piv_val
|
||||
|
||||
# Variable in pivot column becomes basic, ie the only non-zero entry
|
||||
for idx, coeff in enumerate(tableau[:, col_idx]):
|
||||
tableau[idx] += -coeff * piv_row
|
||||
tableau[row_idx] = piv_row
|
||||
return tableau
|
||||
|
||||
def change_stage(self, tableau: np.ndarray) -> np.ndarray:
|
||||
"""Exits first phase of the two-stage method by deleting artificial
|
||||
rows and columns, or completes the algorithm if exiting the standard
|
||||
case.
|
||||
|
||||
>>> t = Tableau(np.array([
|
||||
... [3, 3, -1, -1, 0, 0, 4],
|
||||
... [2, 1, 0, 0, 0, 0, 0.],
|
||||
... [1, 2, -1, 0, 1, 0, 2],
|
||||
... [2, 1, 0, -1, 0, 1, 2]
|
||||
... ]), 2)
|
||||
>>> t.change_stage(t.tableau).tolist()
|
||||
... # doctest: +NORMALIZE_WHITESPACE
|
||||
[[2.0, 1.0, 0.0, 0.0, 0.0, 0.0],
|
||||
[1.0, 2.0, -1.0, 0.0, 1.0, 2.0],
|
||||
[2.0, 1.0, 0.0, -1.0, 0.0, 2.0]]
|
||||
"""
|
||||
# Objective of original objective row remains
|
||||
self.objectives.pop()
|
||||
|
||||
if not self.objectives:
|
||||
return tableau
|
||||
|
||||
# Slice containing ids for artificial columns
|
||||
s = slice(-self.n_art_vars - 1, -1)
|
||||
|
||||
# Delete the artificial variable columns
|
||||
tableau = np.delete(tableau, s, axis=1)
|
||||
|
||||
# Delete the objective row of the first stage
|
||||
tableau = np.delete(tableau, 0, axis=0)
|
||||
|
||||
self.n_stages = 1
|
||||
self.n_rows -= 1
|
||||
self.n_art_vars = 0
|
||||
self.stop_iter = False
|
||||
return tableau
|
||||
|
||||
def run_simplex(self) -> dict[Any, Any]:
|
||||
"""Operate on tableau until objective function cannot be
|
||||
improved further.
|
||||
|
||||
# Standard linear program:
|
||||
Max: x1 + x2
|
||||
ST: x1 + 3x2 <= 4
|
||||
3x1 + x2 <= 4
|
||||
>>> Tableau(np.array([[-1,-1,0,0,0],[1,3,1,0,4],[3,1,0,1,4.]]),
|
||||
... 2).run_simplex()
|
||||
{'P': 2.0, 'x1': 1.0, 'x2': 1.0}
|
||||
|
||||
# Optimal tableau input:
|
||||
>>> Tableau(np.array([
|
||||
... [0, 0, 0.25, 0.25, 2],
|
||||
... [0, 1, 0.375, -0.125, 1],
|
||||
... [1, 0, -0.125, 0.375, 1]
|
||||
... ]), 2).run_simplex()
|
||||
{'P': 2.0, 'x1': 1.0, 'x2': 1.0}
|
||||
|
||||
# Non-standard: >= constraints
|
||||
Max: 2x1 + 3x2 + x3
|
||||
ST: x1 + x2 + x3 <= 40
|
||||
2x1 + x2 - x3 >= 10
|
||||
- x2 + x3 >= 10
|
||||
>>> Tableau(np.array([
|
||||
... [2, 0, 0, 0, -1, -1, 0, 0, 20],
|
||||
... [-2, -3, -1, 0, 0, 0, 0, 0, 0],
|
||||
... [1, 1, 1, 1, 0, 0, 0, 0, 40],
|
||||
... [2, 1, -1, 0, -1, 0, 1, 0, 10],
|
||||
... [0, -1, 1, 0, 0, -1, 0, 1, 10.]
|
||||
... ]), 3).run_simplex()
|
||||
{'P': 70.0, 'x1': 10.0, 'x2': 10.0, 'x3': 20.0}
|
||||
|
||||
# Non standard: minimisation and equalities
|
||||
Min: x1 + x2
|
||||
ST: 2x1 + x2 = 12
|
||||
6x1 + 5x2 = 40
|
||||
>>> Tableau(np.array([
|
||||
... [8, 6, 0, -1, 0, -1, 0, 0, 52],
|
||||
... [1, 1, 0, 0, 0, 0, 0, 0, 0],
|
||||
... [2, 1, 1, 0, 0, 0, 0, 0, 12],
|
||||
... [2, 1, 0, -1, 0, 0, 1, 0, 12],
|
||||
... [6, 5, 0, 0, 1, 0, 0, 0, 40],
|
||||
... [6, 5, 0, 0, 0, -1, 0, 1, 40.]
|
||||
... ]), 2).run_simplex()
|
||||
{'P': 7.0, 'x1': 5.0, 'x2': 2.0}
|
||||
"""
|
||||
# Stop simplex algorithm from cycling.
|
||||
for _ in range(100):
|
||||
# Completion of each stage removes an objective. If both stages
|
||||
# are complete, then no objectives are left
|
||||
if not self.objectives:
|
||||
self.col_titles = self.generate_col_titles(
|
||||
self.n_vars, self.n_slack, self.n_art_vars
|
||||
)
|
||||
|
||||
# Find the values of each variable at optimal solution
|
||||
return self.interpret_tableau(self.tableau, self.col_titles)
|
||||
|
||||
row_idx, col_idx = self.find_pivot(self.tableau)
|
||||
|
||||
# If there are no more negative values in objective row
|
||||
if self.stop_iter:
|
||||
# Delete artificial variable columns and rows. Update attributes
|
||||
self.tableau = self.change_stage(self.tableau)
|
||||
else:
|
||||
self.tableau = self.pivot(self.tableau, row_idx, col_idx)
|
||||
return {}
|
||||
|
||||
def interpret_tableau(
|
||||
self, tableau: np.ndarray, col_titles: list[str]
|
||||
) -> dict[str, float]:
|
||||
"""Given the final tableau, add the corresponding values of the basic
|
||||
decision variables to the `output_dict`
|
||||
>>> tableau = np.array([
|
||||
... [0,0,0.875,0.375,5],
|
||||
... [0,1,0.375,-0.125,1],
|
||||
... [1,0,-0.125,0.375,1]
|
||||
... ])
|
||||
>>> t = Tableau(tableau, 2)
|
||||
>>> t.interpret_tableau(tableau, ["x1", "x2", "s1", "s2", "RHS"])
|
||||
{'P': 5.0, 'x1': 1.0, 'x2': 1.0}
|
||||
"""
|
||||
# P = RHS of final tableau
|
||||
output_dict = {"P": abs(tableau[0, -1])}
|
||||
|
||||
for i in range(self.n_vars):
|
||||
# Gives ids of nonzero entries in the ith column
|
||||
nonzero = np.nonzero(tableau[:, i])
|
||||
n_nonzero = len(nonzero[0])
|
||||
|
||||
# First entry in the nonzero ids
|
||||
nonzero_rowidx = nonzero[0][0]
|
||||
nonzero_val = tableau[nonzero_rowidx, i]
|
||||
|
||||
# If there is only one nonzero value in column, which is one
|
||||
if n_nonzero == nonzero_val == 1:
|
||||
rhs_val = tableau[nonzero_rowidx, -1]
|
||||
output_dict[col_titles[i]] = rhs_val
|
||||
|
||||
# Check for basic variables
|
||||
for title in col_titles:
|
||||
# Don't add RHS or slack variables to output dict
|
||||
if title[0] not in "R-s-a":
|
||||
output_dict.setdefault(title, 0)
|
||||
return output_dict
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
Loading…
Reference in New Issue
Block a user