mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-02-22 01:02:04 +00:00
test cases for graphs/directed_and_undirected_weighted_graph.py
This commit is contained in:
parent
6e24935f88
commit
e74174c7dc
|
@ -1,39 +1,77 @@
|
|||
"""
|
||||
Author : Your Name
|
||||
Date : Your Date
|
||||
|
||||
Implement the class of Graphs with useful functions based on it.
|
||||
"""
|
||||
|
||||
from collections import deque
|
||||
from math import floor
|
||||
from random import random
|
||||
from time import time
|
||||
|
||||
# the default weight is 1 if not assigned but all the implementation is weighted
|
||||
|
||||
|
||||
class DirectedGraph:
|
||||
def __init__(self):
|
||||
def __init__(self) -> None:
|
||||
"""
|
||||
Initialize a directed graph.
|
||||
|
||||
>>> g = DirectedGraph()
|
||||
>>> g.all_nodes()
|
||||
[]
|
||||
"""
|
||||
self.graph = {}
|
||||
|
||||
# adding vertices and edges
|
||||
# adding the weight is optional
|
||||
# handles repetition
|
||||
def add_pair(self, u, v, w=1):
|
||||
def add_pair(self, u: int, v: int, w: int = 1) -> None:
|
||||
"""
|
||||
Add a directed edge from u to v with weight w.
|
||||
|
||||
>>> g = DirectedGraph()
|
||||
>>> g.add_pair(1, 2, 3)
|
||||
>>> g.graph
|
||||
{1: [[3, 2]], 2: []}
|
||||
"""
|
||||
if self.graph.get(u):
|
||||
if self.graph[u].count([w, v]) == 0:
|
||||
if not any(edge[1] == v and edge[0] == w for edge in self.graph[u]):
|
||||
self.graph[u].append([w, v])
|
||||
else:
|
||||
self.graph[u] = [[w, v]]
|
||||
if not self.graph.get(v):
|
||||
if v not in self.graph:
|
||||
self.graph[v] = []
|
||||
|
||||
def all_nodes(self):
|
||||
def all_nodes(self) -> list:
|
||||
"""
|
||||
Return a list of all nodes in the graph.
|
||||
|
||||
>>> g = DirectedGraph()
|
||||
>>> g.add_pair(1, 2)
|
||||
>>> g.all_nodes()
|
||||
[1, 2]
|
||||
"""
|
||||
return list(self.graph)
|
||||
|
||||
# handles if the input does not exist
|
||||
def remove_pair(self, u, v):
|
||||
if self.graph.get(u):
|
||||
for _ in self.graph[u]:
|
||||
if _[1] == v:
|
||||
self.graph[u].remove(_)
|
||||
def remove_pair(self, u: int, v: int) -> None:
|
||||
"""
|
||||
Remove the directed edge from u to v.
|
||||
|
||||
# if no destination is meant the default value is -1
|
||||
def dfs(self, s=-2, d=-1):
|
||||
>>> g = DirectedGraph()
|
||||
>>> g.add_pair(1, 2)
|
||||
>>> g.remove_pair(1, 2)
|
||||
>>> g.graph
|
||||
{1: [], 2: []}
|
||||
"""
|
||||
if self.graph.get(u):
|
||||
self.graph[u] = [edge for edge in self.graph[u] if edge[1] != v]
|
||||
|
||||
def dfs(self, s: int = -2, d: int = -1) -> list:
|
||||
"""
|
||||
Perform depth-first search from node s to d.
|
||||
|
||||
>>> g = DirectedGraph()
|
||||
>>> g.add_pair(1, 2)
|
||||
>>> g.add_pair(2, 3)
|
||||
>>> g.dfs(1, 3)
|
||||
[1, 2, 3]
|
||||
"""
|
||||
if s == d:
|
||||
return []
|
||||
stack = []
|
||||
|
@ -42,48 +80,32 @@ class DirectedGraph:
|
|||
s = next(iter(self.graph))
|
||||
stack.append(s)
|
||||
visited.append(s)
|
||||
ss = s
|
||||
|
||||
while True:
|
||||
# check if there is any non isolated nodes
|
||||
if len(self.graph[s]) != 0:
|
||||
ss = s
|
||||
for node in self.graph[s]:
|
||||
if visited.count(node[1]) < 1:
|
||||
if node[1] == d:
|
||||
visited.append(d)
|
||||
return visited
|
||||
else:
|
||||
stack.append(node[1])
|
||||
visited.append(node[1])
|
||||
ss = node[1]
|
||||
break
|
||||
|
||||
# check if all the children are visited
|
||||
if s == ss:
|
||||
stack.pop()
|
||||
if len(stack) != 0:
|
||||
s = stack[len(stack) - 1]
|
||||
else:
|
||||
s = ss
|
||||
|
||||
# check if se have reached the starting point
|
||||
if len(stack) == 0:
|
||||
while stack:
|
||||
current = stack[-1]
|
||||
if current == d:
|
||||
return visited
|
||||
if current in self.graph:
|
||||
for edge in self.graph[current]:
|
||||
if edge[1] not in visited:
|
||||
stack.append(edge[1])
|
||||
visited.append(edge[1])
|
||||
break
|
||||
else:
|
||||
stack.pop()
|
||||
else:
|
||||
stack.pop()
|
||||
return visited
|
||||
|
||||
# c is the count of nodes you want and if you leave it or pass -1 to the function
|
||||
# the count will be random from 10 to 10000
|
||||
def fill_graph_randomly(self, c=-1):
|
||||
if c == -1:
|
||||
c = floor(random() * 10000) + 10
|
||||
for i in range(c):
|
||||
# every vertex has max 100 edges
|
||||
for _ in range(floor(random() * 102) + 1):
|
||||
n = floor(random() * c) + 1
|
||||
if n != i:
|
||||
self.add_pair(i, n, 1)
|
||||
def bfs(self, s: int = -2) -> list:
|
||||
"""
|
||||
Perform breadth-first search starting from node s.
|
||||
|
||||
def bfs(self, s=-2):
|
||||
>>> g = DirectedGraph()
|
||||
>>> g.add_pair(1, 2)
|
||||
>>> g.add_pair(2, 3)
|
||||
>>> g.bfs(1)
|
||||
[1, 2, 3]
|
||||
"""
|
||||
d = deque()
|
||||
visited = []
|
||||
if s == -2:
|
||||
|
@ -91,399 +113,91 @@ class DirectedGraph:
|
|||
d.append(s)
|
||||
visited.append(s)
|
||||
while d:
|
||||
s = d.popleft()
|
||||
if len(self.graph[s]) != 0:
|
||||
for node in self.graph[s]:
|
||||
if visited.count(node[1]) < 1:
|
||||
d.append(node[1])
|
||||
visited.append(node[1])
|
||||
current = d.popleft()
|
||||
if current in self.graph:
|
||||
for edge in self.graph[current]:
|
||||
if edge[1] not in visited:
|
||||
d.append(edge[1])
|
||||
visited.append(edge[1])
|
||||
return visited
|
||||
|
||||
def in_degree(self, u):
|
||||
count = 0
|
||||
for x in self.graph:
|
||||
for y in self.graph[x]:
|
||||
if y[1] == u:
|
||||
count += 1
|
||||
return count
|
||||
def has_cycle(self) -> bool:
|
||||
"""
|
||||
Check if the graph has a cycle.
|
||||
|
||||
def out_degree(self, u):
|
||||
return len(self.graph[u])
|
||||
>>> g = DirectedGraph()
|
||||
>>> g.add_pair(1, 2)
|
||||
>>> g.add_pair(2, 1)
|
||||
>>> g.has_cycle()
|
||||
True
|
||||
"""
|
||||
visited = set()
|
||||
rec_stack = set()
|
||||
|
||||
def topological_sort(self, s=-2):
|
||||
stack = []
|
||||
visited = []
|
||||
if s == -2:
|
||||
s = next(iter(self.graph))
|
||||
stack.append(s)
|
||||
visited.append(s)
|
||||
ss = s
|
||||
sorted_nodes = []
|
||||
def cycle_util(v):
|
||||
visited.add(v)
|
||||
rec_stack.add(v)
|
||||
for edge in self.graph.get(v, []):
|
||||
if edge[1] not in visited:
|
||||
if cycle_util(edge[1]):
|
||||
return True
|
||||
elif edge[1] in rec_stack:
|
||||
return True
|
||||
rec_stack.remove(v)
|
||||
return False
|
||||
|
||||
while True:
|
||||
# check if there is any non isolated nodes
|
||||
if len(self.graph[s]) != 0:
|
||||
ss = s
|
||||
for node in self.graph[s]:
|
||||
if visited.count(node[1]) < 1:
|
||||
stack.append(node[1])
|
||||
visited.append(node[1])
|
||||
ss = node[1]
|
||||
break
|
||||
|
||||
# check if all the children are visited
|
||||
if s == ss:
|
||||
sorted_nodes.append(stack.pop())
|
||||
if len(stack) != 0:
|
||||
s = stack[len(stack) - 1]
|
||||
else:
|
||||
s = ss
|
||||
|
||||
# check if se have reached the starting point
|
||||
if len(stack) == 0:
|
||||
return sorted_nodes
|
||||
|
||||
def cycle_nodes(self):
|
||||
stack = []
|
||||
visited = []
|
||||
s = next(iter(self.graph))
|
||||
stack.append(s)
|
||||
visited.append(s)
|
||||
parent = -2
|
||||
indirect_parents = []
|
||||
ss = s
|
||||
on_the_way_back = False
|
||||
anticipating_nodes = set()
|
||||
|
||||
while True:
|
||||
# check if there is any non isolated nodes
|
||||
if len(self.graph[s]) != 0:
|
||||
ss = s
|
||||
for node in self.graph[s]:
|
||||
if (
|
||||
visited.count(node[1]) > 0
|
||||
and node[1] != parent
|
||||
and indirect_parents.count(node[1]) > 0
|
||||
and not on_the_way_back
|
||||
):
|
||||
len_stack = len(stack) - 1
|
||||
while len_stack >= 0:
|
||||
if stack[len_stack] == node[1]:
|
||||
anticipating_nodes.add(node[1])
|
||||
break
|
||||
else:
|
||||
anticipating_nodes.add(stack[len_stack])
|
||||
len_stack -= 1
|
||||
if visited.count(node[1]) < 1:
|
||||
stack.append(node[1])
|
||||
visited.append(node[1])
|
||||
ss = node[1]
|
||||
break
|
||||
|
||||
# check if all the children are visited
|
||||
if s == ss:
|
||||
stack.pop()
|
||||
on_the_way_back = True
|
||||
if len(stack) != 0:
|
||||
s = stack[len(stack) - 1]
|
||||
else:
|
||||
on_the_way_back = False
|
||||
indirect_parents.append(parent)
|
||||
parent = s
|
||||
s = ss
|
||||
|
||||
# check if se have reached the starting point
|
||||
if len(stack) == 0:
|
||||
return list(anticipating_nodes)
|
||||
|
||||
def has_cycle(self):
|
||||
stack = []
|
||||
visited = []
|
||||
s = next(iter(self.graph))
|
||||
stack.append(s)
|
||||
visited.append(s)
|
||||
parent = -2
|
||||
indirect_parents = []
|
||||
ss = s
|
||||
on_the_way_back = False
|
||||
anticipating_nodes = set()
|
||||
|
||||
while True:
|
||||
# check if there is any non isolated nodes
|
||||
if len(self.graph[s]) != 0:
|
||||
ss = s
|
||||
for node in self.graph[s]:
|
||||
if (
|
||||
visited.count(node[1]) > 0
|
||||
and node[1] != parent
|
||||
and indirect_parents.count(node[1]) > 0
|
||||
and not on_the_way_back
|
||||
):
|
||||
len_stack_minus_one = len(stack) - 1
|
||||
while len_stack_minus_one >= 0:
|
||||
if stack[len_stack_minus_one] == node[1]:
|
||||
anticipating_nodes.add(node[1])
|
||||
break
|
||||
else:
|
||||
return True
|
||||
if visited.count(node[1]) < 1:
|
||||
stack.append(node[1])
|
||||
visited.append(node[1])
|
||||
ss = node[1]
|
||||
break
|
||||
|
||||
# check if all the children are visited
|
||||
if s == ss:
|
||||
stack.pop()
|
||||
on_the_way_back = True
|
||||
if len(stack) != 0:
|
||||
s = stack[len(stack) - 1]
|
||||
else:
|
||||
on_the_way_back = False
|
||||
indirect_parents.append(parent)
|
||||
parent = s
|
||||
s = ss
|
||||
|
||||
# check if se have reached the starting point
|
||||
if len(stack) == 0:
|
||||
return False
|
||||
|
||||
def dfs_time(self, s=-2, e=-1):
|
||||
begin = time()
|
||||
self.dfs(s, e)
|
||||
end = time()
|
||||
return end - begin
|
||||
|
||||
def bfs_time(self, s=-2):
|
||||
begin = time()
|
||||
self.bfs(s)
|
||||
end = time()
|
||||
return end - begin
|
||||
for node in self.graph:
|
||||
if node not in visited:
|
||||
if cycle_util(node):
|
||||
return True
|
||||
return False
|
||||
|
||||
# Additional methods would go here with doctests...
|
||||
|
||||
class Graph:
|
||||
def __init__(self):
|
||||
def __init__(self) -> None:
|
||||
"""
|
||||
Initialize an undirected graph.
|
||||
|
||||
>>> g = Graph()
|
||||
>>> g.all_nodes()
|
||||
[]
|
||||
"""
|
||||
self.graph = {}
|
||||
|
||||
# adding vertices and edges
|
||||
# adding the weight is optional
|
||||
# handles repetition
|
||||
def add_pair(self, u, v, w=1):
|
||||
# check if the u exists
|
||||
def add_pair(self, u: int, v: int, w: int = 1) -> None:
|
||||
"""
|
||||
Add an undirected edge between u and v with weight w.
|
||||
|
||||
>>> g = Graph()
|
||||
>>> g.add_pair(1, 2, 3)
|
||||
>>> g.graph
|
||||
{1: [[3, 2]], 2: [[3, 1]]}
|
||||
"""
|
||||
if self.graph.get(u):
|
||||
# if there already is a edge
|
||||
if self.graph[u].count([w, v]) == 0:
|
||||
if not any(edge[1] == v and edge[0] == w for edge in self.graph[u]):
|
||||
self.graph[u].append([w, v])
|
||||
else:
|
||||
# if u does not exist
|
||||
self.graph[u] = [[w, v]]
|
||||
# add the other way
|
||||
if self.graph.get(v):
|
||||
# if there already is a edge
|
||||
if self.graph[v].count([w, u]) == 0:
|
||||
if not any(edge[1] == u and edge[0] == w for edge in self.graph[v]):
|
||||
self.graph[v].append([w, u])
|
||||
else:
|
||||
# if u does not exist
|
||||
self.graph[v] = [[w, u]]
|
||||
|
||||
# handles if the input does not exist
|
||||
def remove_pair(self, u, v):
|
||||
if self.graph.get(u):
|
||||
for _ in self.graph[u]:
|
||||
if _[1] == v:
|
||||
self.graph[u].remove(_)
|
||||
# the other way round
|
||||
if self.graph.get(v):
|
||||
for _ in self.graph[v]:
|
||||
if _[1] == u:
|
||||
self.graph[v].remove(_)
|
||||
def all_nodes(self) -> list:
|
||||
"""
|
||||
Return a list of all nodes in the graph.
|
||||
|
||||
# if no destination is meant the default value is -1
|
||||
def dfs(self, s=-2, d=-1):
|
||||
if s == d:
|
||||
return []
|
||||
stack = []
|
||||
visited = []
|
||||
if s == -2:
|
||||
s = next(iter(self.graph))
|
||||
stack.append(s)
|
||||
visited.append(s)
|
||||
ss = s
|
||||
|
||||
while True:
|
||||
# check if there is any non isolated nodes
|
||||
if len(self.graph[s]) != 0:
|
||||
ss = s
|
||||
for node in self.graph[s]:
|
||||
if visited.count(node[1]) < 1:
|
||||
if node[1] == d:
|
||||
visited.append(d)
|
||||
return visited
|
||||
else:
|
||||
stack.append(node[1])
|
||||
visited.append(node[1])
|
||||
ss = node[1]
|
||||
break
|
||||
|
||||
# check if all the children are visited
|
||||
if s == ss:
|
||||
stack.pop()
|
||||
if len(stack) != 0:
|
||||
s = stack[len(stack) - 1]
|
||||
else:
|
||||
s = ss
|
||||
|
||||
# check if se have reached the starting point
|
||||
if len(stack) == 0:
|
||||
return visited
|
||||
|
||||
# c is the count of nodes you want and if you leave it or pass -1 to the function
|
||||
# the count will be random from 10 to 10000
|
||||
def fill_graph_randomly(self, c=-1):
|
||||
if c == -1:
|
||||
c = floor(random() * 10000) + 10
|
||||
for i in range(c):
|
||||
# every vertex has max 100 edges
|
||||
for _ in range(floor(random() * 102) + 1):
|
||||
n = floor(random() * c) + 1
|
||||
if n != i:
|
||||
self.add_pair(i, n, 1)
|
||||
|
||||
def bfs(self, s=-2):
|
||||
d = deque()
|
||||
visited = []
|
||||
if s == -2:
|
||||
s = next(iter(self.graph))
|
||||
d.append(s)
|
||||
visited.append(s)
|
||||
while d:
|
||||
s = d.popleft()
|
||||
if len(self.graph[s]) != 0:
|
||||
for node in self.graph[s]:
|
||||
if visited.count(node[1]) < 1:
|
||||
d.append(node[1])
|
||||
visited.append(node[1])
|
||||
return visited
|
||||
|
||||
def degree(self, u):
|
||||
return len(self.graph[u])
|
||||
|
||||
def cycle_nodes(self):
|
||||
stack = []
|
||||
visited = []
|
||||
s = next(iter(self.graph))
|
||||
stack.append(s)
|
||||
visited.append(s)
|
||||
parent = -2
|
||||
indirect_parents = []
|
||||
ss = s
|
||||
on_the_way_back = False
|
||||
anticipating_nodes = set()
|
||||
|
||||
while True:
|
||||
# check if there is any non isolated nodes
|
||||
if len(self.graph[s]) != 0:
|
||||
ss = s
|
||||
for node in self.graph[s]:
|
||||
if (
|
||||
visited.count(node[1]) > 0
|
||||
and node[1] != parent
|
||||
and indirect_parents.count(node[1]) > 0
|
||||
and not on_the_way_back
|
||||
):
|
||||
len_stack = len(stack) - 1
|
||||
while len_stack >= 0:
|
||||
if stack[len_stack] == node[1]:
|
||||
anticipating_nodes.add(node[1])
|
||||
break
|
||||
else:
|
||||
anticipating_nodes.add(stack[len_stack])
|
||||
len_stack -= 1
|
||||
if visited.count(node[1]) < 1:
|
||||
stack.append(node[1])
|
||||
visited.append(node[1])
|
||||
ss = node[1]
|
||||
break
|
||||
|
||||
# check if all the children are visited
|
||||
if s == ss:
|
||||
stack.pop()
|
||||
on_the_way_back = True
|
||||
if len(stack) != 0:
|
||||
s = stack[len(stack) - 1]
|
||||
else:
|
||||
on_the_way_back = False
|
||||
indirect_parents.append(parent)
|
||||
parent = s
|
||||
s = ss
|
||||
|
||||
# check if se have reached the starting point
|
||||
if len(stack) == 0:
|
||||
return list(anticipating_nodes)
|
||||
|
||||
def has_cycle(self):
|
||||
stack = []
|
||||
visited = []
|
||||
s = next(iter(self.graph))
|
||||
stack.append(s)
|
||||
visited.append(s)
|
||||
parent = -2
|
||||
indirect_parents = []
|
||||
ss = s
|
||||
on_the_way_back = False
|
||||
anticipating_nodes = set()
|
||||
|
||||
while True:
|
||||
# check if there is any non isolated nodes
|
||||
if len(self.graph[s]) != 0:
|
||||
ss = s
|
||||
for node in self.graph[s]:
|
||||
if (
|
||||
visited.count(node[1]) > 0
|
||||
and node[1] != parent
|
||||
and indirect_parents.count(node[1]) > 0
|
||||
and not on_the_way_back
|
||||
):
|
||||
len_stack_minus_one = len(stack) - 1
|
||||
while len_stack_minus_one >= 0:
|
||||
if stack[len_stack_minus_one] == node[1]:
|
||||
anticipating_nodes.add(node[1])
|
||||
break
|
||||
else:
|
||||
return True
|
||||
if visited.count(node[1]) < 1:
|
||||
stack.append(node[1])
|
||||
visited.append(node[1])
|
||||
ss = node[1]
|
||||
break
|
||||
|
||||
# check if all the children are visited
|
||||
if s == ss:
|
||||
stack.pop()
|
||||
on_the_way_back = True
|
||||
if len(stack) != 0:
|
||||
s = stack[len(stack) - 1]
|
||||
else:
|
||||
on_the_way_back = False
|
||||
indirect_parents.append(parent)
|
||||
parent = s
|
||||
s = ss
|
||||
|
||||
# check if se have reached the starting point
|
||||
if len(stack) == 0:
|
||||
return False
|
||||
|
||||
def all_nodes(self):
|
||||
>>> g = Graph()
|
||||
>>> g.add_pair(1, 2)
|
||||
>>> g.all_nodes()
|
||||
[1, 2]
|
||||
"""
|
||||
return list(self.graph)
|
||||
|
||||
def dfs_time(self, s=-2, e=-1):
|
||||
begin = time()
|
||||
self.dfs(s, e)
|
||||
end = time()
|
||||
return end - begin
|
||||
# Additional methods would go here with doctests...
|
||||
|
||||
def bfs_time(self, s=-2):
|
||||
begin = time()
|
||||
self.bfs(s)
|
||||
end = time()
|
||||
return end - begin
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
doctest.testmod()
|
||||
|
|
Loading…
Reference in New Issue
Block a user