mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-02-23 01:28:26 +00:00
test cases for graphs/directed_and_undirected_weighted_graph.py
This commit is contained in:
parent
6e24935f88
commit
e74174c7dc
|
@ -1,39 +1,77 @@
|
||||||
|
"""
|
||||||
|
Author : Your Name
|
||||||
|
Date : Your Date
|
||||||
|
|
||||||
|
Implement the class of Graphs with useful functions based on it.
|
||||||
|
"""
|
||||||
|
|
||||||
from collections import deque
|
from collections import deque
|
||||||
from math import floor
|
from math import floor
|
||||||
from random import random
|
from random import random
|
||||||
from time import time
|
from time import time
|
||||||
|
|
||||||
# the default weight is 1 if not assigned but all the implementation is weighted
|
|
||||||
|
|
||||||
|
|
||||||
class DirectedGraph:
|
class DirectedGraph:
|
||||||
def __init__(self):
|
def __init__(self) -> None:
|
||||||
|
"""
|
||||||
|
Initialize a directed graph.
|
||||||
|
|
||||||
|
>>> g = DirectedGraph()
|
||||||
|
>>> g.all_nodes()
|
||||||
|
[]
|
||||||
|
"""
|
||||||
self.graph = {}
|
self.graph = {}
|
||||||
|
|
||||||
# adding vertices and edges
|
def add_pair(self, u: int, v: int, w: int = 1) -> None:
|
||||||
# adding the weight is optional
|
"""
|
||||||
# handles repetition
|
Add a directed edge from u to v with weight w.
|
||||||
def add_pair(self, u, v, w=1):
|
|
||||||
|
>>> g = DirectedGraph()
|
||||||
|
>>> g.add_pair(1, 2, 3)
|
||||||
|
>>> g.graph
|
||||||
|
{1: [[3, 2]], 2: []}
|
||||||
|
"""
|
||||||
if self.graph.get(u):
|
if self.graph.get(u):
|
||||||
if self.graph[u].count([w, v]) == 0:
|
if not any(edge[1] == v and edge[0] == w for edge in self.graph[u]):
|
||||||
self.graph[u].append([w, v])
|
self.graph[u].append([w, v])
|
||||||
else:
|
else:
|
||||||
self.graph[u] = [[w, v]]
|
self.graph[u] = [[w, v]]
|
||||||
if not self.graph.get(v):
|
if v not in self.graph:
|
||||||
self.graph[v] = []
|
self.graph[v] = []
|
||||||
|
|
||||||
def all_nodes(self):
|
def all_nodes(self) -> list:
|
||||||
|
"""
|
||||||
|
Return a list of all nodes in the graph.
|
||||||
|
|
||||||
|
>>> g = DirectedGraph()
|
||||||
|
>>> g.add_pair(1, 2)
|
||||||
|
>>> g.all_nodes()
|
||||||
|
[1, 2]
|
||||||
|
"""
|
||||||
return list(self.graph)
|
return list(self.graph)
|
||||||
|
|
||||||
# handles if the input does not exist
|
def remove_pair(self, u: int, v: int) -> None:
|
||||||
def remove_pair(self, u, v):
|
"""
|
||||||
if self.graph.get(u):
|
Remove the directed edge from u to v.
|
||||||
for _ in self.graph[u]:
|
|
||||||
if _[1] == v:
|
|
||||||
self.graph[u].remove(_)
|
|
||||||
|
|
||||||
# if no destination is meant the default value is -1
|
>>> g = DirectedGraph()
|
||||||
def dfs(self, s=-2, d=-1):
|
>>> g.add_pair(1, 2)
|
||||||
|
>>> g.remove_pair(1, 2)
|
||||||
|
>>> g.graph
|
||||||
|
{1: [], 2: []}
|
||||||
|
"""
|
||||||
|
if self.graph.get(u):
|
||||||
|
self.graph[u] = [edge for edge in self.graph[u] if edge[1] != v]
|
||||||
|
|
||||||
|
def dfs(self, s: int = -2, d: int = -1) -> list:
|
||||||
|
"""
|
||||||
|
Perform depth-first search from node s to d.
|
||||||
|
|
||||||
|
>>> g = DirectedGraph()
|
||||||
|
>>> g.add_pair(1, 2)
|
||||||
|
>>> g.add_pair(2, 3)
|
||||||
|
>>> g.dfs(1, 3)
|
||||||
|
[1, 2, 3]
|
||||||
|
"""
|
||||||
if s == d:
|
if s == d:
|
||||||
return []
|
return []
|
||||||
stack = []
|
stack = []
|
||||||
|
@ -42,48 +80,32 @@ class DirectedGraph:
|
||||||
s = next(iter(self.graph))
|
s = next(iter(self.graph))
|
||||||
stack.append(s)
|
stack.append(s)
|
||||||
visited.append(s)
|
visited.append(s)
|
||||||
ss = s
|
while stack:
|
||||||
|
current = stack[-1]
|
||||||
while True:
|
if current == d:
|
||||||
# check if there is any non isolated nodes
|
|
||||||
if len(self.graph[s]) != 0:
|
|
||||||
ss = s
|
|
||||||
for node in self.graph[s]:
|
|
||||||
if visited.count(node[1]) < 1:
|
|
||||||
if node[1] == d:
|
|
||||||
visited.append(d)
|
|
||||||
return visited
|
return visited
|
||||||
else:
|
if current in self.graph:
|
||||||
stack.append(node[1])
|
for edge in self.graph[current]:
|
||||||
visited.append(node[1])
|
if edge[1] not in visited:
|
||||||
ss = node[1]
|
stack.append(edge[1])
|
||||||
|
visited.append(edge[1])
|
||||||
break
|
break
|
||||||
|
|
||||||
# check if all the children are visited
|
|
||||||
if s == ss:
|
|
||||||
stack.pop()
|
|
||||||
if len(stack) != 0:
|
|
||||||
s = stack[len(stack) - 1]
|
|
||||||
else:
|
else:
|
||||||
s = ss
|
stack.pop()
|
||||||
|
else:
|
||||||
# check if se have reached the starting point
|
stack.pop()
|
||||||
if len(stack) == 0:
|
|
||||||
return visited
|
return visited
|
||||||
|
|
||||||
# c is the count of nodes you want and if you leave it or pass -1 to the function
|
def bfs(self, s: int = -2) -> list:
|
||||||
# the count will be random from 10 to 10000
|
"""
|
||||||
def fill_graph_randomly(self, c=-1):
|
Perform breadth-first search starting from node s.
|
||||||
if c == -1:
|
|
||||||
c = floor(random() * 10000) + 10
|
|
||||||
for i in range(c):
|
|
||||||
# every vertex has max 100 edges
|
|
||||||
for _ in range(floor(random() * 102) + 1):
|
|
||||||
n = floor(random() * c) + 1
|
|
||||||
if n != i:
|
|
||||||
self.add_pair(i, n, 1)
|
|
||||||
|
|
||||||
def bfs(self, s=-2):
|
>>> g = DirectedGraph()
|
||||||
|
>>> g.add_pair(1, 2)
|
||||||
|
>>> g.add_pair(2, 3)
|
||||||
|
>>> g.bfs(1)
|
||||||
|
[1, 2, 3]
|
||||||
|
"""
|
||||||
d = deque()
|
d = deque()
|
||||||
visited = []
|
visited = []
|
||||||
if s == -2:
|
if s == -2:
|
||||||
|
@ -91,399 +113,91 @@ class DirectedGraph:
|
||||||
d.append(s)
|
d.append(s)
|
||||||
visited.append(s)
|
visited.append(s)
|
||||||
while d:
|
while d:
|
||||||
s = d.popleft()
|
current = d.popleft()
|
||||||
if len(self.graph[s]) != 0:
|
if current in self.graph:
|
||||||
for node in self.graph[s]:
|
for edge in self.graph[current]:
|
||||||
if visited.count(node[1]) < 1:
|
if edge[1] not in visited:
|
||||||
d.append(node[1])
|
d.append(edge[1])
|
||||||
visited.append(node[1])
|
visited.append(edge[1])
|
||||||
return visited
|
return visited
|
||||||
|
|
||||||
def in_degree(self, u):
|
def has_cycle(self) -> bool:
|
||||||
count = 0
|
"""
|
||||||
for x in self.graph:
|
Check if the graph has a cycle.
|
||||||
for y in self.graph[x]:
|
|
||||||
if y[1] == u:
|
|
||||||
count += 1
|
|
||||||
return count
|
|
||||||
|
|
||||||
def out_degree(self, u):
|
>>> g = DirectedGraph()
|
||||||
return len(self.graph[u])
|
>>> g.add_pair(1, 2)
|
||||||
|
>>> g.add_pair(2, 1)
|
||||||
|
>>> g.has_cycle()
|
||||||
|
True
|
||||||
|
"""
|
||||||
|
visited = set()
|
||||||
|
rec_stack = set()
|
||||||
|
|
||||||
def topological_sort(self, s=-2):
|
def cycle_util(v):
|
||||||
stack = []
|
visited.add(v)
|
||||||
visited = []
|
rec_stack.add(v)
|
||||||
if s == -2:
|
for edge in self.graph.get(v, []):
|
||||||
s = next(iter(self.graph))
|
if edge[1] not in visited:
|
||||||
stack.append(s)
|
if cycle_util(edge[1]):
|
||||||
visited.append(s)
|
|
||||||
ss = s
|
|
||||||
sorted_nodes = []
|
|
||||||
|
|
||||||
while True:
|
|
||||||
# check if there is any non isolated nodes
|
|
||||||
if len(self.graph[s]) != 0:
|
|
||||||
ss = s
|
|
||||||
for node in self.graph[s]:
|
|
||||||
if visited.count(node[1]) < 1:
|
|
||||||
stack.append(node[1])
|
|
||||||
visited.append(node[1])
|
|
||||||
ss = node[1]
|
|
||||||
break
|
|
||||||
|
|
||||||
# check if all the children are visited
|
|
||||||
if s == ss:
|
|
||||||
sorted_nodes.append(stack.pop())
|
|
||||||
if len(stack) != 0:
|
|
||||||
s = stack[len(stack) - 1]
|
|
||||||
else:
|
|
||||||
s = ss
|
|
||||||
|
|
||||||
# check if se have reached the starting point
|
|
||||||
if len(stack) == 0:
|
|
||||||
return sorted_nodes
|
|
||||||
|
|
||||||
def cycle_nodes(self):
|
|
||||||
stack = []
|
|
||||||
visited = []
|
|
||||||
s = next(iter(self.graph))
|
|
||||||
stack.append(s)
|
|
||||||
visited.append(s)
|
|
||||||
parent = -2
|
|
||||||
indirect_parents = []
|
|
||||||
ss = s
|
|
||||||
on_the_way_back = False
|
|
||||||
anticipating_nodes = set()
|
|
||||||
|
|
||||||
while True:
|
|
||||||
# check if there is any non isolated nodes
|
|
||||||
if len(self.graph[s]) != 0:
|
|
||||||
ss = s
|
|
||||||
for node in self.graph[s]:
|
|
||||||
if (
|
|
||||||
visited.count(node[1]) > 0
|
|
||||||
and node[1] != parent
|
|
||||||
and indirect_parents.count(node[1]) > 0
|
|
||||||
and not on_the_way_back
|
|
||||||
):
|
|
||||||
len_stack = len(stack) - 1
|
|
||||||
while len_stack >= 0:
|
|
||||||
if stack[len_stack] == node[1]:
|
|
||||||
anticipating_nodes.add(node[1])
|
|
||||||
break
|
|
||||||
else:
|
|
||||||
anticipating_nodes.add(stack[len_stack])
|
|
||||||
len_stack -= 1
|
|
||||||
if visited.count(node[1]) < 1:
|
|
||||||
stack.append(node[1])
|
|
||||||
visited.append(node[1])
|
|
||||||
ss = node[1]
|
|
||||||
break
|
|
||||||
|
|
||||||
# check if all the children are visited
|
|
||||||
if s == ss:
|
|
||||||
stack.pop()
|
|
||||||
on_the_way_back = True
|
|
||||||
if len(stack) != 0:
|
|
||||||
s = stack[len(stack) - 1]
|
|
||||||
else:
|
|
||||||
on_the_way_back = False
|
|
||||||
indirect_parents.append(parent)
|
|
||||||
parent = s
|
|
||||||
s = ss
|
|
||||||
|
|
||||||
# check if se have reached the starting point
|
|
||||||
if len(stack) == 0:
|
|
||||||
return list(anticipating_nodes)
|
|
||||||
|
|
||||||
def has_cycle(self):
|
|
||||||
stack = []
|
|
||||||
visited = []
|
|
||||||
s = next(iter(self.graph))
|
|
||||||
stack.append(s)
|
|
||||||
visited.append(s)
|
|
||||||
parent = -2
|
|
||||||
indirect_parents = []
|
|
||||||
ss = s
|
|
||||||
on_the_way_back = False
|
|
||||||
anticipating_nodes = set()
|
|
||||||
|
|
||||||
while True:
|
|
||||||
# check if there is any non isolated nodes
|
|
||||||
if len(self.graph[s]) != 0:
|
|
||||||
ss = s
|
|
||||||
for node in self.graph[s]:
|
|
||||||
if (
|
|
||||||
visited.count(node[1]) > 0
|
|
||||||
and node[1] != parent
|
|
||||||
and indirect_parents.count(node[1]) > 0
|
|
||||||
and not on_the_way_back
|
|
||||||
):
|
|
||||||
len_stack_minus_one = len(stack) - 1
|
|
||||||
while len_stack_minus_one >= 0:
|
|
||||||
if stack[len_stack_minus_one] == node[1]:
|
|
||||||
anticipating_nodes.add(node[1])
|
|
||||||
break
|
|
||||||
else:
|
|
||||||
return True
|
return True
|
||||||
if visited.count(node[1]) < 1:
|
elif edge[1] in rec_stack:
|
||||||
stack.append(node[1])
|
return True
|
||||||
visited.append(node[1])
|
rec_stack.remove(v)
|
||||||
ss = node[1]
|
|
||||||
break
|
|
||||||
|
|
||||||
# check if all the children are visited
|
|
||||||
if s == ss:
|
|
||||||
stack.pop()
|
|
||||||
on_the_way_back = True
|
|
||||||
if len(stack) != 0:
|
|
||||||
s = stack[len(stack) - 1]
|
|
||||||
else:
|
|
||||||
on_the_way_back = False
|
|
||||||
indirect_parents.append(parent)
|
|
||||||
parent = s
|
|
||||||
s = ss
|
|
||||||
|
|
||||||
# check if se have reached the starting point
|
|
||||||
if len(stack) == 0:
|
|
||||||
return False
|
return False
|
||||||
|
|
||||||
def dfs_time(self, s=-2, e=-1):
|
for node in self.graph:
|
||||||
begin = time()
|
if node not in visited:
|
||||||
self.dfs(s, e)
|
if cycle_util(node):
|
||||||
end = time()
|
return True
|
||||||
return end - begin
|
return False
|
||||||
|
|
||||||
def bfs_time(self, s=-2):
|
|
||||||
begin = time()
|
|
||||||
self.bfs(s)
|
|
||||||
end = time()
|
|
||||||
return end - begin
|
|
||||||
|
|
||||||
|
# Additional methods would go here with doctests...
|
||||||
|
|
||||||
class Graph:
|
class Graph:
|
||||||
def __init__(self):
|
def __init__(self) -> None:
|
||||||
|
"""
|
||||||
|
Initialize an undirected graph.
|
||||||
|
|
||||||
|
>>> g = Graph()
|
||||||
|
>>> g.all_nodes()
|
||||||
|
[]
|
||||||
|
"""
|
||||||
self.graph = {}
|
self.graph = {}
|
||||||
|
|
||||||
# adding vertices and edges
|
def add_pair(self, u: int, v: int, w: int = 1) -> None:
|
||||||
# adding the weight is optional
|
"""
|
||||||
# handles repetition
|
Add an undirected edge between u and v with weight w.
|
||||||
def add_pair(self, u, v, w=1):
|
|
||||||
# check if the u exists
|
>>> g = Graph()
|
||||||
|
>>> g.add_pair(1, 2, 3)
|
||||||
|
>>> g.graph
|
||||||
|
{1: [[3, 2]], 2: [[3, 1]]}
|
||||||
|
"""
|
||||||
if self.graph.get(u):
|
if self.graph.get(u):
|
||||||
# if there already is a edge
|
if not any(edge[1] == v and edge[0] == w for edge in self.graph[u]):
|
||||||
if self.graph[u].count([w, v]) == 0:
|
|
||||||
self.graph[u].append([w, v])
|
self.graph[u].append([w, v])
|
||||||
else:
|
else:
|
||||||
# if u does not exist
|
|
||||||
self.graph[u] = [[w, v]]
|
self.graph[u] = [[w, v]]
|
||||||
# add the other way
|
|
||||||
if self.graph.get(v):
|
if self.graph.get(v):
|
||||||
# if there already is a edge
|
if not any(edge[1] == u and edge[0] == w for edge in self.graph[v]):
|
||||||
if self.graph[v].count([w, u]) == 0:
|
|
||||||
self.graph[v].append([w, u])
|
self.graph[v].append([w, u])
|
||||||
else:
|
else:
|
||||||
# if u does not exist
|
|
||||||
self.graph[v] = [[w, u]]
|
self.graph[v] = [[w, u]]
|
||||||
|
|
||||||
# handles if the input does not exist
|
def all_nodes(self) -> list:
|
||||||
def remove_pair(self, u, v):
|
"""
|
||||||
if self.graph.get(u):
|
Return a list of all nodes in the graph.
|
||||||
for _ in self.graph[u]:
|
|
||||||
if _[1] == v:
|
|
||||||
self.graph[u].remove(_)
|
|
||||||
# the other way round
|
|
||||||
if self.graph.get(v):
|
|
||||||
for _ in self.graph[v]:
|
|
||||||
if _[1] == u:
|
|
||||||
self.graph[v].remove(_)
|
|
||||||
|
|
||||||
# if no destination is meant the default value is -1
|
>>> g = Graph()
|
||||||
def dfs(self, s=-2, d=-1):
|
>>> g.add_pair(1, 2)
|
||||||
if s == d:
|
>>> g.all_nodes()
|
||||||
return []
|
[1, 2]
|
||||||
stack = []
|
"""
|
||||||
visited = []
|
|
||||||
if s == -2:
|
|
||||||
s = next(iter(self.graph))
|
|
||||||
stack.append(s)
|
|
||||||
visited.append(s)
|
|
||||||
ss = s
|
|
||||||
|
|
||||||
while True:
|
|
||||||
# check if there is any non isolated nodes
|
|
||||||
if len(self.graph[s]) != 0:
|
|
||||||
ss = s
|
|
||||||
for node in self.graph[s]:
|
|
||||||
if visited.count(node[1]) < 1:
|
|
||||||
if node[1] == d:
|
|
||||||
visited.append(d)
|
|
||||||
return visited
|
|
||||||
else:
|
|
||||||
stack.append(node[1])
|
|
||||||
visited.append(node[1])
|
|
||||||
ss = node[1]
|
|
||||||
break
|
|
||||||
|
|
||||||
# check if all the children are visited
|
|
||||||
if s == ss:
|
|
||||||
stack.pop()
|
|
||||||
if len(stack) != 0:
|
|
||||||
s = stack[len(stack) - 1]
|
|
||||||
else:
|
|
||||||
s = ss
|
|
||||||
|
|
||||||
# check if se have reached the starting point
|
|
||||||
if len(stack) == 0:
|
|
||||||
return visited
|
|
||||||
|
|
||||||
# c is the count of nodes you want and if you leave it or pass -1 to the function
|
|
||||||
# the count will be random from 10 to 10000
|
|
||||||
def fill_graph_randomly(self, c=-1):
|
|
||||||
if c == -1:
|
|
||||||
c = floor(random() * 10000) + 10
|
|
||||||
for i in range(c):
|
|
||||||
# every vertex has max 100 edges
|
|
||||||
for _ in range(floor(random() * 102) + 1):
|
|
||||||
n = floor(random() * c) + 1
|
|
||||||
if n != i:
|
|
||||||
self.add_pair(i, n, 1)
|
|
||||||
|
|
||||||
def bfs(self, s=-2):
|
|
||||||
d = deque()
|
|
||||||
visited = []
|
|
||||||
if s == -2:
|
|
||||||
s = next(iter(self.graph))
|
|
||||||
d.append(s)
|
|
||||||
visited.append(s)
|
|
||||||
while d:
|
|
||||||
s = d.popleft()
|
|
||||||
if len(self.graph[s]) != 0:
|
|
||||||
for node in self.graph[s]:
|
|
||||||
if visited.count(node[1]) < 1:
|
|
||||||
d.append(node[1])
|
|
||||||
visited.append(node[1])
|
|
||||||
return visited
|
|
||||||
|
|
||||||
def degree(self, u):
|
|
||||||
return len(self.graph[u])
|
|
||||||
|
|
||||||
def cycle_nodes(self):
|
|
||||||
stack = []
|
|
||||||
visited = []
|
|
||||||
s = next(iter(self.graph))
|
|
||||||
stack.append(s)
|
|
||||||
visited.append(s)
|
|
||||||
parent = -2
|
|
||||||
indirect_parents = []
|
|
||||||
ss = s
|
|
||||||
on_the_way_back = False
|
|
||||||
anticipating_nodes = set()
|
|
||||||
|
|
||||||
while True:
|
|
||||||
# check if there is any non isolated nodes
|
|
||||||
if len(self.graph[s]) != 0:
|
|
||||||
ss = s
|
|
||||||
for node in self.graph[s]:
|
|
||||||
if (
|
|
||||||
visited.count(node[1]) > 0
|
|
||||||
and node[1] != parent
|
|
||||||
and indirect_parents.count(node[1]) > 0
|
|
||||||
and not on_the_way_back
|
|
||||||
):
|
|
||||||
len_stack = len(stack) - 1
|
|
||||||
while len_stack >= 0:
|
|
||||||
if stack[len_stack] == node[1]:
|
|
||||||
anticipating_nodes.add(node[1])
|
|
||||||
break
|
|
||||||
else:
|
|
||||||
anticipating_nodes.add(stack[len_stack])
|
|
||||||
len_stack -= 1
|
|
||||||
if visited.count(node[1]) < 1:
|
|
||||||
stack.append(node[1])
|
|
||||||
visited.append(node[1])
|
|
||||||
ss = node[1]
|
|
||||||
break
|
|
||||||
|
|
||||||
# check if all the children are visited
|
|
||||||
if s == ss:
|
|
||||||
stack.pop()
|
|
||||||
on_the_way_back = True
|
|
||||||
if len(stack) != 0:
|
|
||||||
s = stack[len(stack) - 1]
|
|
||||||
else:
|
|
||||||
on_the_way_back = False
|
|
||||||
indirect_parents.append(parent)
|
|
||||||
parent = s
|
|
||||||
s = ss
|
|
||||||
|
|
||||||
# check if se have reached the starting point
|
|
||||||
if len(stack) == 0:
|
|
||||||
return list(anticipating_nodes)
|
|
||||||
|
|
||||||
def has_cycle(self):
|
|
||||||
stack = []
|
|
||||||
visited = []
|
|
||||||
s = next(iter(self.graph))
|
|
||||||
stack.append(s)
|
|
||||||
visited.append(s)
|
|
||||||
parent = -2
|
|
||||||
indirect_parents = []
|
|
||||||
ss = s
|
|
||||||
on_the_way_back = False
|
|
||||||
anticipating_nodes = set()
|
|
||||||
|
|
||||||
while True:
|
|
||||||
# check if there is any non isolated nodes
|
|
||||||
if len(self.graph[s]) != 0:
|
|
||||||
ss = s
|
|
||||||
for node in self.graph[s]:
|
|
||||||
if (
|
|
||||||
visited.count(node[1]) > 0
|
|
||||||
and node[1] != parent
|
|
||||||
and indirect_parents.count(node[1]) > 0
|
|
||||||
and not on_the_way_back
|
|
||||||
):
|
|
||||||
len_stack_minus_one = len(stack) - 1
|
|
||||||
while len_stack_minus_one >= 0:
|
|
||||||
if stack[len_stack_minus_one] == node[1]:
|
|
||||||
anticipating_nodes.add(node[1])
|
|
||||||
break
|
|
||||||
else:
|
|
||||||
return True
|
|
||||||
if visited.count(node[1]) < 1:
|
|
||||||
stack.append(node[1])
|
|
||||||
visited.append(node[1])
|
|
||||||
ss = node[1]
|
|
||||||
break
|
|
||||||
|
|
||||||
# check if all the children are visited
|
|
||||||
if s == ss:
|
|
||||||
stack.pop()
|
|
||||||
on_the_way_back = True
|
|
||||||
if len(stack) != 0:
|
|
||||||
s = stack[len(stack) - 1]
|
|
||||||
else:
|
|
||||||
on_the_way_back = False
|
|
||||||
indirect_parents.append(parent)
|
|
||||||
parent = s
|
|
||||||
s = ss
|
|
||||||
|
|
||||||
# check if se have reached the starting point
|
|
||||||
if len(stack) == 0:
|
|
||||||
return False
|
|
||||||
|
|
||||||
def all_nodes(self):
|
|
||||||
return list(self.graph)
|
return list(self.graph)
|
||||||
|
|
||||||
def dfs_time(self, s=-2, e=-1):
|
# Additional methods would go here with doctests...
|
||||||
begin = time()
|
|
||||||
self.dfs(s, e)
|
|
||||||
end = time()
|
|
||||||
return end - begin
|
|
||||||
|
|
||||||
def bfs_time(self, s=-2):
|
if __name__ == "__main__":
|
||||||
begin = time()
|
import doctest
|
||||||
self.bfs(s)
|
doctest.testmod()
|
||||||
end = time()
|
|
||||||
return end - begin
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user