Added type hints and minor case improvements

This commit is contained in:
Harmanaya Sharma 2024-10-22 23:49:07 +05:30
parent 2293d37599
commit e9ef03eadb

View File

@ -3,7 +3,7 @@ import pandas as pd
class RidgeRegression:
def __init__(self, alpha=0.001, lambda_=0.1, iterations=1000):
def __init__(self, alpha: float = 0.001, lambda_: float = 0.1, iterations: int = 1000) -> None:
"""
Ridge Regression Constructor
:param alpha: Learning rate for gradient descent
@ -15,24 +15,38 @@ class RidgeRegression:
self.iterations = iterations
self.theta = None
def feature_scaling(self, X):
def feature_scaling(self, features: np.ndarray) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
"""
Normalize features to have mean 0 and standard deviation 1
:param X: Input features, shape (m, n)
:return: Scaled features, mean, and std for each feature
Normalize features to have mean 0 and standard deviation 1.
:param features: Input features, shape (m, n)
:return: Tuple containing:
- Scaled features
- Mean of each feature
- Standard deviation of each feature
Example:
>>> rr = RidgeRegression()
>>> features = np.array([[1, 2], [2, 3], [4, 6]])
>>> scaled_features, mean, std = rr.feature_scaling(features)
>>> np.allclose(scaled_features.mean(axis=0), 0)
True
>>> np.allclose(scaled_features.std(axis=0), 1)
True
"""
mean = np.mean(X, axis=0)
std = np.std(X, axis=0)
mean = np.mean(features, axis=0)
std = np.std(features, axis=0)
# Avoid division by zero for constant features (std = 0)
std[std == 0] = 1 # Set std=1 for constant features to avoid NaN
X_scaled = (X - mean) / std
return X_scaled, mean, std
scaled_features = (features - mean) / std
return scaled_features, mean, std
def fit(self, X, y):
def fit(self, X: np.ndarray, y: np.ndarray) -> None:
"""
Fit the Ridge Regression model to the training data
Fit the Ridge Regression model to the training data.
:param X: Input features, shape (m, n)
:param y: Target values, shape (m,)
"""
@ -48,18 +62,20 @@ class RidgeRegression:
gradient = (X_scaled.T.dot(error) + self.lambda_ * self.theta) / m
self.theta -= self.alpha * gradient # Update weights
def predict(self, X):
def predict(self, X: np.ndarray) -> np.ndarray:
"""
Predict values using the trained model
Predict values using the trained model.
:param X: Input features, shape (m, n)
:return: Predicted values, shape (m,)
"""
X_scaled, _, _ = self.feature_scaling(X) # Scale features using training data
return X_scaled.dot(self.theta)
def compute_cost(self, X, y):
def compute_cost(self, X: np.ndarray, y: np.ndarray) -> float:
"""
Compute the cost function with regularization
Compute the cost function with regularization.
:param X: Input features, shape (m, n)
:param y: Target values, shape (m,)
:return: Computed cost
@ -72,9 +88,10 @@ class RidgeRegression:
) * np.sum(self.theta**2)
return cost
def mean_absolute_error(self, y_true, y_pred):
def mean_absolute_error(self, y_true: np.ndarray, y_pred: np.ndarray) -> float:
"""
Compute Mean Absolute Error (MAE) between true and predicted values
Compute Mean Absolute Error (MAE) between true and predicted values.
:param y_true: Actual target values, shape (m,)
:param y_pred: Predicted target values, shape (m,)
:return: MAE