mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-02-07 18:10:55 +00:00
Added type hints and minor case improvements
This commit is contained in:
parent
2293d37599
commit
e9ef03eadb
|
@ -3,7 +3,7 @@ import pandas as pd
|
|||
|
||||
|
||||
class RidgeRegression:
|
||||
def __init__(self, alpha=0.001, lambda_=0.1, iterations=1000):
|
||||
def __init__(self, alpha: float = 0.001, lambda_: float = 0.1, iterations: int = 1000) -> None:
|
||||
"""
|
||||
Ridge Regression Constructor
|
||||
:param alpha: Learning rate for gradient descent
|
||||
|
@ -15,24 +15,38 @@ class RidgeRegression:
|
|||
self.iterations = iterations
|
||||
self.theta = None
|
||||
|
||||
def feature_scaling(self, X):
|
||||
def feature_scaling(self, features: np.ndarray) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
|
||||
"""
|
||||
Normalize features to have mean 0 and standard deviation 1
|
||||
:param X: Input features, shape (m, n)
|
||||
:return: Scaled features, mean, and std for each feature
|
||||
Normalize features to have mean 0 and standard deviation 1.
|
||||
|
||||
:param features: Input features, shape (m, n)
|
||||
:return: Tuple containing:
|
||||
- Scaled features
|
||||
- Mean of each feature
|
||||
- Standard deviation of each feature
|
||||
|
||||
Example:
|
||||
>>> rr = RidgeRegression()
|
||||
>>> features = np.array([[1, 2], [2, 3], [4, 6]])
|
||||
>>> scaled_features, mean, std = rr.feature_scaling(features)
|
||||
>>> np.allclose(scaled_features.mean(axis=0), 0)
|
||||
True
|
||||
>>> np.allclose(scaled_features.std(axis=0), 1)
|
||||
True
|
||||
"""
|
||||
mean = np.mean(X, axis=0)
|
||||
std = np.std(X, axis=0)
|
||||
mean = np.mean(features, axis=0)
|
||||
std = np.std(features, axis=0)
|
||||
|
||||
# Avoid division by zero for constant features (std = 0)
|
||||
std[std == 0] = 1 # Set std=1 for constant features to avoid NaN
|
||||
|
||||
X_scaled = (X - mean) / std
|
||||
return X_scaled, mean, std
|
||||
scaled_features = (features - mean) / std
|
||||
return scaled_features, mean, std
|
||||
|
||||
def fit(self, X, y):
|
||||
def fit(self, X: np.ndarray, y: np.ndarray) -> None:
|
||||
"""
|
||||
Fit the Ridge Regression model to the training data
|
||||
Fit the Ridge Regression model to the training data.
|
||||
|
||||
:param X: Input features, shape (m, n)
|
||||
:param y: Target values, shape (m,)
|
||||
"""
|
||||
|
@ -48,18 +62,20 @@ class RidgeRegression:
|
|||
gradient = (X_scaled.T.dot(error) + self.lambda_ * self.theta) / m
|
||||
self.theta -= self.alpha * gradient # Update weights
|
||||
|
||||
def predict(self, X):
|
||||
def predict(self, X: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
Predict values using the trained model
|
||||
Predict values using the trained model.
|
||||
|
||||
:param X: Input features, shape (m, n)
|
||||
:return: Predicted values, shape (m,)
|
||||
"""
|
||||
X_scaled, _, _ = self.feature_scaling(X) # Scale features using training data
|
||||
return X_scaled.dot(self.theta)
|
||||
|
||||
def compute_cost(self, X, y):
|
||||
def compute_cost(self, X: np.ndarray, y: np.ndarray) -> float:
|
||||
"""
|
||||
Compute the cost function with regularization
|
||||
Compute the cost function with regularization.
|
||||
|
||||
:param X: Input features, shape (m, n)
|
||||
:param y: Target values, shape (m,)
|
||||
:return: Computed cost
|
||||
|
@ -72,9 +88,10 @@ class RidgeRegression:
|
|||
) * np.sum(self.theta**2)
|
||||
return cost
|
||||
|
||||
def mean_absolute_error(self, y_true, y_pred):
|
||||
def mean_absolute_error(self, y_true: np.ndarray, y_pred: np.ndarray) -> float:
|
||||
"""
|
||||
Compute Mean Absolute Error (MAE) between true and predicted values
|
||||
Compute Mean Absolute Error (MAE) between true and predicted values.
|
||||
|
||||
:param y_true: Actual target values, shape (m,)
|
||||
:param y_pred: Predicted target values, shape (m,)
|
||||
:return: MAE
|
||||
|
|
Loading…
Reference in New Issue
Block a user