diff --git a/DIRECTORY.md b/DIRECTORY.md index f0a34a553..814cf568f 100644 --- a/DIRECTORY.md +++ b/DIRECTORY.md @@ -1192,6 +1192,7 @@ ## Quantum * [Q Fourier Transform](quantum/q_fourier_transform.py) + * [Shor Algorithm](quantum/shor_algorithm.py) ## Scheduling * [First Come First Served](scheduling/first_come_first_served.py) diff --git a/quantum/shor_algorithm.py b/quantum/shor_algorithm.py index 1cc5a5714..28d6d2fd1 100644 --- a/quantum/shor_algorithm.py +++ b/quantum/shor_algorithm.py @@ -6,13 +6,15 @@ Shor Algorithm is one of the basic quantum computing algorithm that is used in breaking the RSA cryptography protocol, by finding the prime numbers that are used to create the public key value, n -In this implementation, I have used a very simple construct without +In this implementation, I have used a very simple construct without the use of qiskit or cirq to help understand how Shor algorithm's idea actually works. Website referred for shor algorithm: https://www.geeksforgeeks.org/shors-factorization-algorithm/ """ + + class Shor: def period_find(self, num: int, number: int) -> int: """ @@ -24,7 +26,7 @@ class Shor: >>> shor.period_find(3, 7) 6 """ - start:int = 1 + start: int = 1 while pow(num, start, number) != 1: start += 1 return start @@ -40,28 +42,24 @@ class Shor: >>> factors (3, 5) """ - if number%2 == 0: - return 2, number//2 + if number % 2 == 0: + return 2, number // 2 while True: random.seed(0) - num:int = random.randint(2, number-1) - gcd_number_num:int = math.gcd(number, num) + num: int = random.randint(2, number - 1) + gcd_number_num: int = math.gcd(number, num) if gcd_number_num > 1: - return gcd_number_num, number//gcd_number_num - - result:int = self.period_find(num, number) - if not result%2: - start:int = pow(num, result//2, number) - if start != number-1: - p_value:int = math.gcd(start-1, number) - q_value:int = math.gcd(start+1, number) + return gcd_number_num, number // gcd_number_num + + result: int = self.period_find(num, number) + if not result % 2: + start: int = pow(num, result // 2, number) + if start != number - 1: + p_value: int = math.gcd(start - 1, number) + q_value: int = math.gcd(start + 1, number) if p_value > 1 and q_value > 1: return p_value, q_value - + shor = Shor() print(shor.shor_algorithm(15)) - - - - \ No newline at end of file