From ee778128bdf8d4d6d386cfdc500f3b3173f56c06 Mon Sep 17 00:00:00 2001 From: Maxim Smolskiy Date: Thu, 2 Mar 2023 07:57:07 +0300 Subject: [PATCH] Reduce the complexity of other/scoring_algorithm.py (#8045) * Increase the --max-complexity threshold in the file .flake8 --- other/scoring_algorithm.py | 57 ++++++++++++++++++++++++++++---------- 1 file changed, 43 insertions(+), 14 deletions(-) diff --git a/other/scoring_algorithm.py b/other/scoring_algorithm.py index 00d87cfc0..8e04a8f30 100644 --- a/other/scoring_algorithm.py +++ b/other/scoring_algorithm.py @@ -23,29 +23,29 @@ Thus the weights for each column are as follows: """ -def procentual_proximity( - source_data: list[list[float]], weights: list[int] -) -> list[list[float]]: +def get_data(source_data: list[list[float]]) -> list[list[float]]: """ - weights - int list - possible values - 0 / 1 - 0 if lower values have higher weight in the data set - 1 if higher values have higher weight in the data set - - >>> procentual_proximity([[20, 60, 2012],[23, 90, 2015],[22, 50, 2011]], [0, 0, 1]) - [[20, 60, 2012, 2.0], [23, 90, 2015, 1.0], [22, 50, 2011, 1.3333333333333335]] + >>> get_data([[20, 60, 2012],[23, 90, 2015],[22, 50, 2011]]) + [[20.0, 23.0, 22.0], [60.0, 90.0, 50.0], [2012.0, 2015.0, 2011.0]] """ - - # getting data data_lists: list[list[float]] = [] for data in source_data: for i, el in enumerate(data): if len(data_lists) < i + 1: data_lists.append([]) data_lists[i].append(float(el)) + return data_lists + +def calculate_each_score( + data_lists: list[list[float]], weights: list[int] +) -> list[list[float]]: + """ + >>> calculate_each_score([[20, 23, 22], [60, 90, 50], [2012, 2015, 2011]], + ... [0, 0, 1]) + [[1.0, 0.0, 0.33333333333333337], [0.75, 0.0, 1.0], [0.25, 1.0, 0.0]] + """ score_lists: list[list[float]] = [] - # calculating each score for dlist, weight in zip(data_lists, weights): mind = min(dlist) maxd = max(dlist) @@ -72,14 +72,43 @@ def procentual_proximity( score_lists.append(score) + return score_lists + + +def generate_final_scores(score_lists: list[list[float]]) -> list[float]: + """ + >>> generate_final_scores([[1.0, 0.0, 0.33333333333333337], + ... [0.75, 0.0, 1.0], + ... [0.25, 1.0, 0.0]]) + [2.0, 1.0, 1.3333333333333335] + """ # initialize final scores final_scores: list[float] = [0 for i in range(len(score_lists[0]))] - # generate final scores for slist in score_lists: for j, ele in enumerate(slist): final_scores[j] = final_scores[j] + ele + return final_scores + + +def procentual_proximity( + source_data: list[list[float]], weights: list[int] +) -> list[list[float]]: + """ + weights - int list + possible values - 0 / 1 + 0 if lower values have higher weight in the data set + 1 if higher values have higher weight in the data set + + >>> procentual_proximity([[20, 60, 2012],[23, 90, 2015],[22, 50, 2011]], [0, 0, 1]) + [[20, 60, 2012, 2.0], [23, 90, 2015, 1.0], [22, 50, 2011, 1.3333333333333335]] + """ + + data_lists = get_data(source_data) + score_lists = calculate_each_score(data_lists, weights) + final_scores = generate_final_scores(score_lists) + # append scores to source data for i, ele in enumerate(final_scores): source_data[i].append(ele)