mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 16:27:02 +00:00
Added Markov Chain (#2146)
* Added Markov Chain * Implemented suggestions
This commit is contained in:
parent
cbbaa98684
commit
f1ce2d6e80
82
other/markov_chain.py
Normal file
82
other/markov_chain.py
Normal file
|
@ -0,0 +1,82 @@
|
|||
from collections import Counter
|
||||
from random import random
|
||||
from typing import Dict, List, Tuple
|
||||
|
||||
|
||||
class MarkovChainGraphUndirectedUnweighted:
|
||||
'''
|
||||
Undirected Unweighted Graph for running Markov Chain Algorithm
|
||||
'''
|
||||
|
||||
def __init__(self):
|
||||
self.connections = {}
|
||||
|
||||
def add_node(self, node: str) -> None:
|
||||
self.connections[node] = {}
|
||||
|
||||
def add_transition_probability(self, node1: str,
|
||||
node2: str,
|
||||
probability: float) -> None:
|
||||
if node1 not in self.connections:
|
||||
self.add_node(node1)
|
||||
if node2 not in self.connections:
|
||||
self.add_node(node2)
|
||||
self.connections[node1][node2] = probability
|
||||
|
||||
def get_nodes(self) -> List[str]:
|
||||
return list(self.connections)
|
||||
|
||||
def transition(self, node: str) -> str:
|
||||
current_probability = 0
|
||||
random_value = random()
|
||||
|
||||
for dest in self.connections[node]:
|
||||
current_probability += self.connections[node][dest]
|
||||
if current_probability > random_value:
|
||||
return dest
|
||||
|
||||
|
||||
def get_transitions(start: str,
|
||||
transitions: List[Tuple[str, str, float]],
|
||||
steps: int) -> Dict[str, int]:
|
||||
'''
|
||||
Running Markov Chain algorithm and calculating the number of times each node is
|
||||
visited
|
||||
|
||||
>>> transitions = [
|
||||
... ('a', 'a', 0.9),
|
||||
... ('a', 'b', 0.075),
|
||||
... ('a', 'c', 0.025),
|
||||
... ('b', 'a', 0.15),
|
||||
... ('b', 'b', 0.8),
|
||||
... ('b', 'c', 0.05),
|
||||
... ('c', 'a', 0.25),
|
||||
... ('c', 'b', 0.25),
|
||||
... ('c', 'c', 0.5)
|
||||
... ]
|
||||
|
||||
>>> result = get_transitions('a', transitions, 5000)
|
||||
|
||||
>>> result['a'] > result['b'] > result['c']
|
||||
True
|
||||
'''
|
||||
|
||||
graph = MarkovChainGraphUndirectedUnweighted()
|
||||
|
||||
for node1, node2, probability in transitions:
|
||||
graph.add_transition_probability(node1, node2, probability)
|
||||
|
||||
visited = Counter(graph.get_nodes())
|
||||
node = start
|
||||
|
||||
for _ in range(steps):
|
||||
node = graph.transition(node)
|
||||
visited[node] += 1
|
||||
|
||||
return visited
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
Loading…
Reference in New Issue
Block a user