mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 00:07:00 +00:00
Enable ruff ICN001 rule (#11329)
* Enable ruff ICN001 rule * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
efb7463cde
commit
f2246ce7fd
|
@ -38,7 +38,7 @@ https://www.youtube.com/watch?v=4RhLNDqcjpA
|
|||
|
||||
import string
|
||||
|
||||
import numpy
|
||||
import numpy as np
|
||||
|
||||
from maths.greatest_common_divisor import greatest_common_divisor
|
||||
|
||||
|
@ -49,11 +49,11 @@ class HillCipher:
|
|||
# i.e. a total of 36 characters
|
||||
|
||||
# take x and return x % len(key_string)
|
||||
modulus = numpy.vectorize(lambda x: x % 36)
|
||||
modulus = np.vectorize(lambda x: x % 36)
|
||||
|
||||
to_int = numpy.vectorize(round)
|
||||
to_int = np.vectorize(round)
|
||||
|
||||
def __init__(self, encrypt_key: numpy.ndarray) -> None:
|
||||
def __init__(self, encrypt_key: np.ndarray) -> None:
|
||||
"""
|
||||
encrypt_key is an NxN numpy array
|
||||
"""
|
||||
|
@ -63,7 +63,7 @@ class HillCipher:
|
|||
|
||||
def replace_letters(self, letter: str) -> int:
|
||||
"""
|
||||
>>> hill_cipher = HillCipher(numpy.array([[2, 5], [1, 6]]))
|
||||
>>> hill_cipher = HillCipher(np.array([[2, 5], [1, 6]]))
|
||||
>>> hill_cipher.replace_letters('T')
|
||||
19
|
||||
>>> hill_cipher.replace_letters('0')
|
||||
|
@ -73,7 +73,7 @@ class HillCipher:
|
|||
|
||||
def replace_digits(self, num: int) -> str:
|
||||
"""
|
||||
>>> hill_cipher = HillCipher(numpy.array([[2, 5], [1, 6]]))
|
||||
>>> hill_cipher = HillCipher(np.array([[2, 5], [1, 6]]))
|
||||
>>> hill_cipher.replace_digits(19)
|
||||
'T'
|
||||
>>> hill_cipher.replace_digits(26)
|
||||
|
@ -83,10 +83,10 @@ class HillCipher:
|
|||
|
||||
def check_determinant(self) -> None:
|
||||
"""
|
||||
>>> hill_cipher = HillCipher(numpy.array([[2, 5], [1, 6]]))
|
||||
>>> hill_cipher = HillCipher(np.array([[2, 5], [1, 6]]))
|
||||
>>> hill_cipher.check_determinant()
|
||||
"""
|
||||
det = round(numpy.linalg.det(self.encrypt_key))
|
||||
det = round(np.linalg.det(self.encrypt_key))
|
||||
|
||||
if det < 0:
|
||||
det = det % len(self.key_string)
|
||||
|
@ -101,7 +101,7 @@ class HillCipher:
|
|||
|
||||
def process_text(self, text: str) -> str:
|
||||
"""
|
||||
>>> hill_cipher = HillCipher(numpy.array([[2, 5], [1, 6]]))
|
||||
>>> hill_cipher = HillCipher(np.array([[2, 5], [1, 6]]))
|
||||
>>> hill_cipher.process_text('Testing Hill Cipher')
|
||||
'TESTINGHILLCIPHERR'
|
||||
>>> hill_cipher.process_text('hello')
|
||||
|
@ -117,7 +117,7 @@ class HillCipher:
|
|||
|
||||
def encrypt(self, text: str) -> str:
|
||||
"""
|
||||
>>> hill_cipher = HillCipher(numpy.array([[2, 5], [1, 6]]))
|
||||
>>> hill_cipher = HillCipher(np.array([[2, 5], [1, 6]]))
|
||||
>>> hill_cipher.encrypt('testing hill cipher')
|
||||
'WHXYJOLM9C6XT085LL'
|
||||
>>> hill_cipher.encrypt('hello')
|
||||
|
@ -129,7 +129,7 @@ class HillCipher:
|
|||
for i in range(0, len(text) - self.break_key + 1, self.break_key):
|
||||
batch = text[i : i + self.break_key]
|
||||
vec = [self.replace_letters(char) for char in batch]
|
||||
batch_vec = numpy.array([vec]).T
|
||||
batch_vec = np.array([vec]).T
|
||||
batch_encrypted = self.modulus(self.encrypt_key.dot(batch_vec)).T.tolist()[
|
||||
0
|
||||
]
|
||||
|
@ -140,14 +140,14 @@ class HillCipher:
|
|||
|
||||
return encrypted
|
||||
|
||||
def make_decrypt_key(self) -> numpy.ndarray:
|
||||
def make_decrypt_key(self) -> np.ndarray:
|
||||
"""
|
||||
>>> hill_cipher = HillCipher(numpy.array([[2, 5], [1, 6]]))
|
||||
>>> hill_cipher = HillCipher(np.array([[2, 5], [1, 6]]))
|
||||
>>> hill_cipher.make_decrypt_key()
|
||||
array([[ 6, 25],
|
||||
[ 5, 26]])
|
||||
"""
|
||||
det = round(numpy.linalg.det(self.encrypt_key))
|
||||
det = round(np.linalg.det(self.encrypt_key))
|
||||
|
||||
if det < 0:
|
||||
det = det % len(self.key_string)
|
||||
|
@ -158,16 +158,14 @@ class HillCipher:
|
|||
break
|
||||
|
||||
inv_key = (
|
||||
det_inv
|
||||
* numpy.linalg.det(self.encrypt_key)
|
||||
* numpy.linalg.inv(self.encrypt_key)
|
||||
det_inv * np.linalg.det(self.encrypt_key) * np.linalg.inv(self.encrypt_key)
|
||||
)
|
||||
|
||||
return self.to_int(self.modulus(inv_key))
|
||||
|
||||
def decrypt(self, text: str) -> str:
|
||||
"""
|
||||
>>> hill_cipher = HillCipher(numpy.array([[2, 5], [1, 6]]))
|
||||
>>> hill_cipher = HillCipher(np.array([[2, 5], [1, 6]]))
|
||||
>>> hill_cipher.decrypt('WHXYJOLM9C6XT085LL')
|
||||
'TESTINGHILLCIPHERR'
|
||||
>>> hill_cipher.decrypt('85FF00')
|
||||
|
@ -180,7 +178,7 @@ class HillCipher:
|
|||
for i in range(0, len(text) - self.break_key + 1, self.break_key):
|
||||
batch = text[i : i + self.break_key]
|
||||
vec = [self.replace_letters(char) for char in batch]
|
||||
batch_vec = numpy.array([vec]).T
|
||||
batch_vec = np.array([vec]).T
|
||||
batch_decrypted = self.modulus(decrypt_key.dot(batch_vec)).T.tolist()[0]
|
||||
decrypted_batch = "".join(
|
||||
self.replace_digits(num) for num in batch_decrypted
|
||||
|
@ -199,7 +197,7 @@ def main() -> None:
|
|||
row = [int(x) for x in input().split()]
|
||||
hill_matrix.append(row)
|
||||
|
||||
hc = HillCipher(numpy.array(hill_matrix))
|
||||
hc = HillCipher(np.array(hill_matrix))
|
||||
|
||||
print("Would you like to encrypt or decrypt some text? (1 or 2)")
|
||||
option = input("\n1. Encrypt\n2. Decrypt\n")
|
||||
|
|
|
@ -25,8 +25,8 @@ import warnings
|
|||
from collections.abc import Callable
|
||||
from typing import Any
|
||||
|
||||
import numpy
|
||||
from matplotlib import pyplot
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
c_cauliflower = 0.25 + 0.0j
|
||||
c_polynomial_1 = -0.4 + 0.6j
|
||||
|
@ -37,22 +37,20 @@ window_size = 2.0
|
|||
nb_pixels = 666
|
||||
|
||||
|
||||
def eval_exponential(c_parameter: complex, z_values: numpy.ndarray) -> numpy.ndarray:
|
||||
def eval_exponential(c_parameter: complex, z_values: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
Evaluate $e^z + c$.
|
||||
>>> eval_exponential(0, 0)
|
||||
1.0
|
||||
>>> abs(eval_exponential(1, numpy.pi*1.j)) < 1e-15
|
||||
>>> abs(eval_exponential(1, np.pi*1.j)) < 1e-15
|
||||
True
|
||||
>>> abs(eval_exponential(1.j, 0)-1-1.j) < 1e-15
|
||||
True
|
||||
"""
|
||||
return numpy.exp(z_values) + c_parameter
|
||||
return np.exp(z_values) + c_parameter
|
||||
|
||||
|
||||
def eval_quadratic_polynomial(
|
||||
c_parameter: complex, z_values: numpy.ndarray
|
||||
) -> numpy.ndarray:
|
||||
def eval_quadratic_polynomial(c_parameter: complex, z_values: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
>>> eval_quadratic_polynomial(0, 2)
|
||||
4
|
||||
|
@ -66,7 +64,7 @@ def eval_quadratic_polynomial(
|
|||
return z_values * z_values + c_parameter
|
||||
|
||||
|
||||
def prepare_grid(window_size: float, nb_pixels: int) -> numpy.ndarray:
|
||||
def prepare_grid(window_size: float, nb_pixels: int) -> np.ndarray:
|
||||
"""
|
||||
Create a grid of complex values of size nb_pixels*nb_pixels with real and
|
||||
imaginary parts ranging from -window_size to window_size (inclusive).
|
||||
|
@ -77,20 +75,20 @@ def prepare_grid(window_size: float, nb_pixels: int) -> numpy.ndarray:
|
|||
[ 0.-1.j, 0.+0.j, 0.+1.j],
|
||||
[ 1.-1.j, 1.+0.j, 1.+1.j]])
|
||||
"""
|
||||
x = numpy.linspace(-window_size, window_size, nb_pixels)
|
||||
x = np.linspace(-window_size, window_size, nb_pixels)
|
||||
x = x.reshape((nb_pixels, 1))
|
||||
y = numpy.linspace(-window_size, window_size, nb_pixels)
|
||||
y = np.linspace(-window_size, window_size, nb_pixels)
|
||||
y = y.reshape((1, nb_pixels))
|
||||
return x + 1.0j * y
|
||||
|
||||
|
||||
def iterate_function(
|
||||
eval_function: Callable[[Any, numpy.ndarray], numpy.ndarray],
|
||||
eval_function: Callable[[Any, np.ndarray], np.ndarray],
|
||||
function_params: Any,
|
||||
nb_iterations: int,
|
||||
z_0: numpy.ndarray,
|
||||
z_0: np.ndarray,
|
||||
infinity: float | None = None,
|
||||
) -> numpy.ndarray:
|
||||
) -> np.ndarray:
|
||||
"""
|
||||
Iterate the function "eval_function" exactly nb_iterations times.
|
||||
The first argument of the function is a parameter which is contained in
|
||||
|
@ -98,22 +96,22 @@ def iterate_function(
|
|||
values to iterate from.
|
||||
This function returns the final iterates.
|
||||
|
||||
>>> iterate_function(eval_quadratic_polynomial, 0, 3, numpy.array([0,1,2])).shape
|
||||
>>> iterate_function(eval_quadratic_polynomial, 0, 3, np.array([0,1,2])).shape
|
||||
(3,)
|
||||
>>> numpy.round(iterate_function(eval_quadratic_polynomial,
|
||||
>>> np.round(iterate_function(eval_quadratic_polynomial,
|
||||
... 0,
|
||||
... 3,
|
||||
... numpy.array([0,1,2]))[0])
|
||||
... np.array([0,1,2]))[0])
|
||||
0j
|
||||
>>> numpy.round(iterate_function(eval_quadratic_polynomial,
|
||||
>>> np.round(iterate_function(eval_quadratic_polynomial,
|
||||
... 0,
|
||||
... 3,
|
||||
... numpy.array([0,1,2]))[1])
|
||||
... np.array([0,1,2]))[1])
|
||||
(1+0j)
|
||||
>>> numpy.round(iterate_function(eval_quadratic_polynomial,
|
||||
>>> np.round(iterate_function(eval_quadratic_polynomial,
|
||||
... 0,
|
||||
... 3,
|
||||
... numpy.array([0,1,2]))[2])
|
||||
... np.array([0,1,2]))[2])
|
||||
(256+0j)
|
||||
"""
|
||||
|
||||
|
@ -121,8 +119,8 @@ def iterate_function(
|
|||
for _ in range(nb_iterations):
|
||||
z_n = eval_function(function_params, z_n)
|
||||
if infinity is not None:
|
||||
numpy.nan_to_num(z_n, copy=False, nan=infinity)
|
||||
z_n[abs(z_n) == numpy.inf] = infinity
|
||||
np.nan_to_num(z_n, copy=False, nan=infinity)
|
||||
z_n[abs(z_n) == np.inf] = infinity
|
||||
return z_n
|
||||
|
||||
|
||||
|
@ -130,21 +128,21 @@ def show_results(
|
|||
function_label: str,
|
||||
function_params: Any,
|
||||
escape_radius: float,
|
||||
z_final: numpy.ndarray,
|
||||
z_final: np.ndarray,
|
||||
) -> None:
|
||||
"""
|
||||
Plots of whether the absolute value of z_final is greater than
|
||||
the value of escape_radius. Adds the function_label and function_params to
|
||||
the title.
|
||||
|
||||
>>> show_results('80', 0, 1, numpy.array([[0,1,.5],[.4,2,1.1],[.2,1,1.3]]))
|
||||
>>> show_results('80', 0, 1, np.array([[0,1,.5],[.4,2,1.1],[.2,1,1.3]]))
|
||||
"""
|
||||
|
||||
abs_z_final = (abs(z_final)).transpose()
|
||||
abs_z_final[:, :] = abs_z_final[::-1, :]
|
||||
pyplot.matshow(abs_z_final < escape_radius)
|
||||
pyplot.title(f"Julia set of ${function_label}$, $c={function_params}$")
|
||||
pyplot.show()
|
||||
plt.matshow(abs_z_final < escape_radius)
|
||||
plt.title(f"Julia set of ${function_label}$, $c={function_params}$")
|
||||
plt.show()
|
||||
|
||||
|
||||
def ignore_overflow_warnings() -> None:
|
||||
|
|
|
@ -22,25 +22,25 @@ Requirements (pip):
|
|||
|
||||
from __future__ import annotations
|
||||
|
||||
import matplotlib.pyplot as plt # type: ignore
|
||||
import numpy
|
||||
import matplotlib.pyplot as plt
|
||||
import numpy as np
|
||||
|
||||
# initial triangle of Koch snowflake
|
||||
VECTOR_1 = numpy.array([0, 0])
|
||||
VECTOR_2 = numpy.array([0.5, 0.8660254])
|
||||
VECTOR_3 = numpy.array([1, 0])
|
||||
VECTOR_1 = np.array([0, 0])
|
||||
VECTOR_2 = np.array([0.5, 0.8660254])
|
||||
VECTOR_3 = np.array([1, 0])
|
||||
INITIAL_VECTORS = [VECTOR_1, VECTOR_2, VECTOR_3, VECTOR_1]
|
||||
|
||||
# uncomment for simple Koch curve instead of Koch snowflake
|
||||
# INITIAL_VECTORS = [VECTOR_1, VECTOR_3]
|
||||
|
||||
|
||||
def iterate(initial_vectors: list[numpy.ndarray], steps: int) -> list[numpy.ndarray]:
|
||||
def iterate(initial_vectors: list[np.ndarray], steps: int) -> list[np.ndarray]:
|
||||
"""
|
||||
Go through the number of iterations determined by the argument "steps".
|
||||
Be careful with high values (above 5) since the time to calculate increases
|
||||
exponentially.
|
||||
>>> iterate([numpy.array([0, 0]), numpy.array([1, 0])], 1)
|
||||
>>> iterate([np.array([0, 0]), np.array([1, 0])], 1)
|
||||
[array([0, 0]), array([0.33333333, 0. ]), array([0.5 , \
|
||||
0.28867513]), array([0.66666667, 0. ]), array([1, 0])]
|
||||
"""
|
||||
|
@ -50,13 +50,13 @@ def iterate(initial_vectors: list[numpy.ndarray], steps: int) -> list[numpy.ndar
|
|||
return vectors
|
||||
|
||||
|
||||
def iteration_step(vectors: list[numpy.ndarray]) -> list[numpy.ndarray]:
|
||||
def iteration_step(vectors: list[np.ndarray]) -> list[np.ndarray]:
|
||||
"""
|
||||
Loops through each pair of adjacent vectors. Each line between two adjacent
|
||||
vectors is divided into 4 segments by adding 3 additional vectors in-between
|
||||
the original two vectors. The vector in the middle is constructed through a
|
||||
60 degree rotation so it is bent outwards.
|
||||
>>> iteration_step([numpy.array([0, 0]), numpy.array([1, 0])])
|
||||
>>> iteration_step([np.array([0, 0]), np.array([1, 0])])
|
||||
[array([0, 0]), array([0.33333333, 0. ]), array([0.5 , \
|
||||
0.28867513]), array([0.66666667, 0. ]), array([1, 0])]
|
||||
"""
|
||||
|
@ -74,22 +74,22 @@ def iteration_step(vectors: list[numpy.ndarray]) -> list[numpy.ndarray]:
|
|||
return new_vectors
|
||||
|
||||
|
||||
def rotate(vector: numpy.ndarray, angle_in_degrees: float) -> numpy.ndarray:
|
||||
def rotate(vector: np.ndarray, angle_in_degrees: float) -> np.ndarray:
|
||||
"""
|
||||
Standard rotation of a 2D vector with a rotation matrix
|
||||
(see https://en.wikipedia.org/wiki/Rotation_matrix )
|
||||
>>> rotate(numpy.array([1, 0]), 60)
|
||||
>>> rotate(np.array([1, 0]), 60)
|
||||
array([0.5 , 0.8660254])
|
||||
>>> rotate(numpy.array([1, 0]), 90)
|
||||
>>> rotate(np.array([1, 0]), 90)
|
||||
array([6.123234e-17, 1.000000e+00])
|
||||
"""
|
||||
theta = numpy.radians(angle_in_degrees)
|
||||
c, s = numpy.cos(theta), numpy.sin(theta)
|
||||
rotation_matrix = numpy.array(((c, -s), (s, c)))
|
||||
return numpy.dot(rotation_matrix, vector)
|
||||
theta = np.radians(angle_in_degrees)
|
||||
c, s = np.cos(theta), np.sin(theta)
|
||||
rotation_matrix = np.array(((c, -s), (s, c)))
|
||||
return np.dot(rotation_matrix, vector)
|
||||
|
||||
|
||||
def plot(vectors: list[numpy.ndarray]) -> None:
|
||||
def plot(vectors: list[np.ndarray]) -> None:
|
||||
"""
|
||||
Utility function to plot the vectors using matplotlib.pyplot
|
||||
No doctest was implemented since this function does not have a return value
|
||||
|
|
|
@ -78,7 +78,7 @@ class BezierCurve:
|
|||
step_size: defines the step(s) at which to evaluate the Bezier curve.
|
||||
The smaller the step size, the finer the curve produced.
|
||||
"""
|
||||
from matplotlib import pyplot as plt # type: ignore
|
||||
from matplotlib import pyplot as plt
|
||||
|
||||
to_plot_x: list[float] = [] # x coordinates of points to plot
|
||||
to_plot_y: list[float] = [] # y coordinates of points to plot
|
||||
|
|
|
@ -3,7 +3,7 @@ Implementation of gradient descent algorithm for minimizing cost of a linear hyp
|
|||
function.
|
||||
"""
|
||||
|
||||
import numpy
|
||||
import numpy as np
|
||||
|
||||
# List of input, output pairs
|
||||
train_data = (
|
||||
|
@ -116,7 +116,7 @@ def run_gradient_descent():
|
|||
temp_parameter_vector[i] = (
|
||||
parameter_vector[i] - LEARNING_RATE * cost_derivative
|
||||
)
|
||||
if numpy.allclose(
|
||||
if np.allclose(
|
||||
parameter_vector,
|
||||
temp_parameter_vector,
|
||||
atol=absolute_error_limit,
|
||||
|
|
|
@ -22,7 +22,7 @@ import os
|
|||
import typing
|
||||
import urllib
|
||||
|
||||
import numpy
|
||||
import numpy as np
|
||||
from tensorflow.python.framework import dtypes, random_seed
|
||||
from tensorflow.python.platform import gfile
|
||||
from tensorflow.python.util.deprecation import deprecated
|
||||
|
@ -39,8 +39,8 @@ DEFAULT_SOURCE_URL = "https://storage.googleapis.com/cvdf-datasets/mnist/"
|
|||
|
||||
|
||||
def _read32(bytestream):
|
||||
dt = numpy.dtype(numpy.uint32).newbyteorder(">")
|
||||
return numpy.frombuffer(bytestream.read(4), dtype=dt)[0]
|
||||
dt = np.dtype(np.uint32).newbyteorder(">")
|
||||
return np.frombuffer(bytestream.read(4), dtype=dt)[0]
|
||||
|
||||
|
||||
@deprecated(None, "Please use tf.data to implement this functionality.")
|
||||
|
@ -68,7 +68,7 @@ def _extract_images(f):
|
|||
rows = _read32(bytestream)
|
||||
cols = _read32(bytestream)
|
||||
buf = bytestream.read(rows * cols * num_images)
|
||||
data = numpy.frombuffer(buf, dtype=numpy.uint8)
|
||||
data = np.frombuffer(buf, dtype=np.uint8)
|
||||
data = data.reshape(num_images, rows, cols, 1)
|
||||
return data
|
||||
|
||||
|
@ -77,8 +77,8 @@ def _extract_images(f):
|
|||
def _dense_to_one_hot(labels_dense, num_classes):
|
||||
"""Convert class labels from scalars to one-hot vectors."""
|
||||
num_labels = labels_dense.shape[0]
|
||||
index_offset = numpy.arange(num_labels) * num_classes
|
||||
labels_one_hot = numpy.zeros((num_labels, num_classes))
|
||||
index_offset = np.arange(num_labels) * num_classes
|
||||
labels_one_hot = np.zeros((num_labels, num_classes))
|
||||
labels_one_hot.flat[index_offset + labels_dense.ravel()] = 1
|
||||
return labels_one_hot
|
||||
|
||||
|
@ -107,7 +107,7 @@ def _extract_labels(f, one_hot=False, num_classes=10):
|
|||
)
|
||||
num_items = _read32(bytestream)
|
||||
buf = bytestream.read(num_items)
|
||||
labels = numpy.frombuffer(buf, dtype=numpy.uint8)
|
||||
labels = np.frombuffer(buf, dtype=np.uint8)
|
||||
if one_hot:
|
||||
return _dense_to_one_hot(labels, num_classes)
|
||||
return labels
|
||||
|
@ -153,7 +153,7 @@ class _DataSet:
|
|||
"""
|
||||
seed1, seed2 = random_seed.get_seed(seed)
|
||||
# If op level seed is not set, use whatever graph level seed is returned
|
||||
numpy.random.seed(seed1 if seed is None else seed2)
|
||||
np.random.seed(seed1 if seed is None else seed2)
|
||||
dtype = dtypes.as_dtype(dtype).base_dtype
|
||||
if dtype not in (dtypes.uint8, dtypes.float32):
|
||||
raise TypeError("Invalid image dtype %r, expected uint8 or float32" % dtype)
|
||||
|
@ -175,8 +175,8 @@ class _DataSet:
|
|||
)
|
||||
if dtype == dtypes.float32:
|
||||
# Convert from [0, 255] -> [0.0, 1.0].
|
||||
images = images.astype(numpy.float32)
|
||||
images = numpy.multiply(images, 1.0 / 255.0)
|
||||
images = images.astype(np.float32)
|
||||
images = np.multiply(images, 1.0 / 255.0)
|
||||
self._images = images
|
||||
self._labels = labels
|
||||
self._epochs_completed = 0
|
||||
|
@ -210,8 +210,8 @@ class _DataSet:
|
|||
start = self._index_in_epoch
|
||||
# Shuffle for the first epoch
|
||||
if self._epochs_completed == 0 and start == 0 and shuffle:
|
||||
perm0 = numpy.arange(self._num_examples)
|
||||
numpy.random.shuffle(perm0)
|
||||
perm0 = np.arange(self._num_examples)
|
||||
np.random.shuffle(perm0)
|
||||
self._images = self.images[perm0]
|
||||
self._labels = self.labels[perm0]
|
||||
# Go to the next epoch
|
||||
|
@ -224,8 +224,8 @@ class _DataSet:
|
|||
labels_rest_part = self._labels[start : self._num_examples]
|
||||
# Shuffle the data
|
||||
if shuffle:
|
||||
perm = numpy.arange(self._num_examples)
|
||||
numpy.random.shuffle(perm)
|
||||
perm = np.arange(self._num_examples)
|
||||
np.random.shuffle(perm)
|
||||
self._images = self.images[perm]
|
||||
self._labels = self.labels[perm]
|
||||
# Start next epoch
|
||||
|
@ -235,8 +235,8 @@ class _DataSet:
|
|||
images_new_part = self._images[start:end]
|
||||
labels_new_part = self._labels[start:end]
|
||||
return (
|
||||
numpy.concatenate((images_rest_part, images_new_part), axis=0),
|
||||
numpy.concatenate((labels_rest_part, labels_new_part), axis=0),
|
||||
np.concatenate((images_rest_part, images_new_part), axis=0),
|
||||
np.concatenate((labels_rest_part, labels_new_part), axis=0),
|
||||
)
|
||||
else:
|
||||
self._index_in_epoch += batch_size
|
||||
|
|
|
@ -5,11 +5,11 @@ References:
|
|||
- https://en.wikipedia.org/wiki/Feedforward_neural_network (Feedforward)
|
||||
"""
|
||||
|
||||
import numpy
|
||||
import numpy as np
|
||||
|
||||
|
||||
class TwoHiddenLayerNeuralNetwork:
|
||||
def __init__(self, input_array: numpy.ndarray, output_array: numpy.ndarray) -> None:
|
||||
def __init__(self, input_array: np.ndarray, output_array: np.ndarray) -> None:
|
||||
"""
|
||||
This function initializes the TwoHiddenLayerNeuralNetwork class with random
|
||||
weights for every layer and initializes predicted output with zeroes.
|
||||
|
@ -28,30 +28,28 @@ class TwoHiddenLayerNeuralNetwork:
|
|||
# Random initial weights are assigned.
|
||||
# self.input_array.shape[1] is used to represent number of nodes in input layer.
|
||||
# First hidden layer consists of 4 nodes.
|
||||
self.input_layer_and_first_hidden_layer_weights = numpy.random.rand(
|
||||
self.input_layer_and_first_hidden_layer_weights = np.random.rand(
|
||||
self.input_array.shape[1], 4
|
||||
)
|
||||
|
||||
# Random initial values for the first hidden layer.
|
||||
# First hidden layer has 4 nodes.
|
||||
# Second hidden layer has 3 nodes.
|
||||
self.first_hidden_layer_and_second_hidden_layer_weights = numpy.random.rand(
|
||||
4, 3
|
||||
)
|
||||
self.first_hidden_layer_and_second_hidden_layer_weights = np.random.rand(4, 3)
|
||||
|
||||
# Random initial values for the second hidden layer.
|
||||
# Second hidden layer has 3 nodes.
|
||||
# Output layer has 1 node.
|
||||
self.second_hidden_layer_and_output_layer_weights = numpy.random.rand(3, 1)
|
||||
self.second_hidden_layer_and_output_layer_weights = np.random.rand(3, 1)
|
||||
|
||||
# Real output values provided.
|
||||
self.output_array = output_array
|
||||
|
||||
# Predicted output values by the neural network.
|
||||
# Predicted_output array initially consists of zeroes.
|
||||
self.predicted_output = numpy.zeros(output_array.shape)
|
||||
self.predicted_output = np.zeros(output_array.shape)
|
||||
|
||||
def feedforward(self) -> numpy.ndarray:
|
||||
def feedforward(self) -> np.ndarray:
|
||||
"""
|
||||
The information moves in only one direction i.e. forward from the input nodes,
|
||||
through the two hidden nodes and to the output nodes.
|
||||
|
@ -60,24 +58,24 @@ class TwoHiddenLayerNeuralNetwork:
|
|||
Return layer_between_second_hidden_layer_and_output
|
||||
(i.e the last layer of the neural network).
|
||||
|
||||
>>> input_val = numpy.array(([0, 0, 0], [0, 0, 0], [0, 0, 0]), dtype=float)
|
||||
>>> output_val = numpy.array(([0], [0], [0]), dtype=float)
|
||||
>>> input_val = np.array(([0, 0, 0], [0, 0, 0], [0, 0, 0]), dtype=float)
|
||||
>>> output_val = np.array(([0], [0], [0]), dtype=float)
|
||||
>>> nn = TwoHiddenLayerNeuralNetwork(input_val, output_val)
|
||||
>>> res = nn.feedforward()
|
||||
>>> array_sum = numpy.sum(res)
|
||||
>>> numpy.isnan(array_sum)
|
||||
>>> array_sum = np.sum(res)
|
||||
>>> np.isnan(array_sum)
|
||||
False
|
||||
"""
|
||||
# Layer_between_input_and_first_hidden_layer is the layer connecting the
|
||||
# input nodes with the first hidden layer nodes.
|
||||
self.layer_between_input_and_first_hidden_layer = sigmoid(
|
||||
numpy.dot(self.input_array, self.input_layer_and_first_hidden_layer_weights)
|
||||
np.dot(self.input_array, self.input_layer_and_first_hidden_layer_weights)
|
||||
)
|
||||
|
||||
# layer_between_first_hidden_layer_and_second_hidden_layer is the layer
|
||||
# connecting the first hidden set of nodes with the second hidden set of nodes.
|
||||
self.layer_between_first_hidden_layer_and_second_hidden_layer = sigmoid(
|
||||
numpy.dot(
|
||||
np.dot(
|
||||
self.layer_between_input_and_first_hidden_layer,
|
||||
self.first_hidden_layer_and_second_hidden_layer_weights,
|
||||
)
|
||||
|
@ -86,7 +84,7 @@ class TwoHiddenLayerNeuralNetwork:
|
|||
# layer_between_second_hidden_layer_and_output is the layer connecting
|
||||
# second hidden layer with the output node.
|
||||
self.layer_between_second_hidden_layer_and_output = sigmoid(
|
||||
numpy.dot(
|
||||
np.dot(
|
||||
self.layer_between_first_hidden_layer_and_second_hidden_layer,
|
||||
self.second_hidden_layer_and_output_layer_weights,
|
||||
)
|
||||
|
@ -100,8 +98,8 @@ class TwoHiddenLayerNeuralNetwork:
|
|||
error rate obtained in the previous epoch (i.e., iteration).
|
||||
Updation is done using derivative of sogmoid activation function.
|
||||
|
||||
>>> input_val = numpy.array(([0, 0, 0], [0, 0, 0], [0, 0, 0]), dtype=float)
|
||||
>>> output_val = numpy.array(([0], [0], [0]), dtype=float)
|
||||
>>> input_val = np.array(([0, 0, 0], [0, 0, 0], [0, 0, 0]), dtype=float)
|
||||
>>> output_val = np.array(([0], [0], [0]), dtype=float)
|
||||
>>> nn = TwoHiddenLayerNeuralNetwork(input_val, output_val)
|
||||
>>> res = nn.feedforward()
|
||||
>>> nn.back_propagation()
|
||||
|
@ -110,15 +108,15 @@ class TwoHiddenLayerNeuralNetwork:
|
|||
False
|
||||
"""
|
||||
|
||||
updated_second_hidden_layer_and_output_layer_weights = numpy.dot(
|
||||
updated_second_hidden_layer_and_output_layer_weights = np.dot(
|
||||
self.layer_between_first_hidden_layer_and_second_hidden_layer.T,
|
||||
2
|
||||
* (self.output_array - self.predicted_output)
|
||||
* sigmoid_derivative(self.predicted_output),
|
||||
)
|
||||
updated_first_hidden_layer_and_second_hidden_layer_weights = numpy.dot(
|
||||
updated_first_hidden_layer_and_second_hidden_layer_weights = np.dot(
|
||||
self.layer_between_input_and_first_hidden_layer.T,
|
||||
numpy.dot(
|
||||
np.dot(
|
||||
2
|
||||
* (self.output_array - self.predicted_output)
|
||||
* sigmoid_derivative(self.predicted_output),
|
||||
|
@ -128,10 +126,10 @@ class TwoHiddenLayerNeuralNetwork:
|
|||
self.layer_between_first_hidden_layer_and_second_hidden_layer
|
||||
),
|
||||
)
|
||||
updated_input_layer_and_first_hidden_layer_weights = numpy.dot(
|
||||
updated_input_layer_and_first_hidden_layer_weights = np.dot(
|
||||
self.input_array.T,
|
||||
numpy.dot(
|
||||
numpy.dot(
|
||||
np.dot(
|
||||
np.dot(
|
||||
2
|
||||
* (self.output_array - self.predicted_output)
|
||||
* sigmoid_derivative(self.predicted_output),
|
||||
|
@ -155,7 +153,7 @@ class TwoHiddenLayerNeuralNetwork:
|
|||
updated_second_hidden_layer_and_output_layer_weights
|
||||
)
|
||||
|
||||
def train(self, output: numpy.ndarray, iterations: int, give_loss: bool) -> None:
|
||||
def train(self, output: np.ndarray, iterations: int, give_loss: bool) -> None:
|
||||
"""
|
||||
Performs the feedforwarding and back propagation process for the
|
||||
given number of iterations.
|
||||
|
@ -166,8 +164,8 @@ class TwoHiddenLayerNeuralNetwork:
|
|||
give_loss : boolean value, If True then prints loss for each iteration,
|
||||
If False then nothing is printed
|
||||
|
||||
>>> input_val = numpy.array(([0, 0, 0], [0, 1, 0], [0, 0, 1]), dtype=float)
|
||||
>>> output_val = numpy.array(([0], [1], [1]), dtype=float)
|
||||
>>> input_val = np.array(([0, 0, 0], [0, 1, 0], [0, 0, 1]), dtype=float)
|
||||
>>> output_val = np.array(([0], [1], [1]), dtype=float)
|
||||
>>> nn = TwoHiddenLayerNeuralNetwork(input_val, output_val)
|
||||
>>> first_iteration_weights = nn.feedforward()
|
||||
>>> nn.back_propagation()
|
||||
|
@ -179,10 +177,10 @@ class TwoHiddenLayerNeuralNetwork:
|
|||
self.output = self.feedforward()
|
||||
self.back_propagation()
|
||||
if give_loss:
|
||||
loss = numpy.mean(numpy.square(output - self.feedforward()))
|
||||
loss = np.mean(np.square(output - self.feedforward()))
|
||||
print(f"Iteration {iteration} Loss: {loss}")
|
||||
|
||||
def predict(self, input_arr: numpy.ndarray) -> int:
|
||||
def predict(self, input_arr: np.ndarray) -> int:
|
||||
"""
|
||||
Predict's the output for the given input values using
|
||||
the trained neural network.
|
||||
|
@ -192,8 +190,8 @@ class TwoHiddenLayerNeuralNetwork:
|
|||
than the threshold value else returns 0,
|
||||
as the real output values are in binary.
|
||||
|
||||
>>> input_val = numpy.array(([0, 0, 0], [0, 1, 0], [0, 0, 1]), dtype=float)
|
||||
>>> output_val = numpy.array(([0], [1], [1]), dtype=float)
|
||||
>>> input_val = np.array(([0, 0, 0], [0, 1, 0], [0, 0, 1]), dtype=float)
|
||||
>>> output_val = np.array(([0], [1], [1]), dtype=float)
|
||||
>>> nn = TwoHiddenLayerNeuralNetwork(input_val, output_val)
|
||||
>>> nn.train(output_val, 1000, False)
|
||||
>>> nn.predict([0, 1, 0]) in (0, 1)
|
||||
|
@ -204,18 +202,18 @@ class TwoHiddenLayerNeuralNetwork:
|
|||
self.array = input_arr
|
||||
|
||||
self.layer_between_input_and_first_hidden_layer = sigmoid(
|
||||
numpy.dot(self.array, self.input_layer_and_first_hidden_layer_weights)
|
||||
np.dot(self.array, self.input_layer_and_first_hidden_layer_weights)
|
||||
)
|
||||
|
||||
self.layer_between_first_hidden_layer_and_second_hidden_layer = sigmoid(
|
||||
numpy.dot(
|
||||
np.dot(
|
||||
self.layer_between_input_and_first_hidden_layer,
|
||||
self.first_hidden_layer_and_second_hidden_layer_weights,
|
||||
)
|
||||
)
|
||||
|
||||
self.layer_between_second_hidden_layer_and_output = sigmoid(
|
||||
numpy.dot(
|
||||
np.dot(
|
||||
self.layer_between_first_hidden_layer_and_second_hidden_layer,
|
||||
self.second_hidden_layer_and_output_layer_weights,
|
||||
)
|
||||
|
@ -224,26 +222,26 @@ class TwoHiddenLayerNeuralNetwork:
|
|||
return int((self.layer_between_second_hidden_layer_and_output > 0.6)[0])
|
||||
|
||||
|
||||
def sigmoid(value: numpy.ndarray) -> numpy.ndarray:
|
||||
def sigmoid(value: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
Applies sigmoid activation function.
|
||||
|
||||
return normalized values
|
||||
|
||||
>>> sigmoid(numpy.array(([1, 0, 2], [1, 0, 0]), dtype=numpy.float64))
|
||||
>>> sigmoid(np.array(([1, 0, 2], [1, 0, 0]), dtype=np.float64))
|
||||
array([[0.73105858, 0.5 , 0.88079708],
|
||||
[0.73105858, 0.5 , 0.5 ]])
|
||||
"""
|
||||
return 1 / (1 + numpy.exp(-value))
|
||||
return 1 / (1 + np.exp(-value))
|
||||
|
||||
|
||||
def sigmoid_derivative(value: numpy.ndarray) -> numpy.ndarray:
|
||||
def sigmoid_derivative(value: np.ndarray) -> np.ndarray:
|
||||
"""
|
||||
Provides the derivative value of the sigmoid function.
|
||||
|
||||
returns derivative of the sigmoid value
|
||||
|
||||
>>> sigmoid_derivative(numpy.array(([1, 0, 2], [1, 0, 0]), dtype=numpy.float64))
|
||||
>>> sigmoid_derivative(np.array(([1, 0, 2], [1, 0, 0]), dtype=np.float64))
|
||||
array([[ 0., 0., -2.],
|
||||
[ 0., 0., 0.]])
|
||||
"""
|
||||
|
@ -264,7 +262,7 @@ def example() -> int:
|
|||
True
|
||||
"""
|
||||
# Input values.
|
||||
test_input = numpy.array(
|
||||
test_input = np.array(
|
||||
(
|
||||
[0, 0, 0],
|
||||
[0, 0, 1],
|
||||
|
@ -275,11 +273,11 @@ def example() -> int:
|
|||
[1, 1, 0],
|
||||
[1, 1, 1],
|
||||
),
|
||||
dtype=numpy.float64,
|
||||
dtype=np.float64,
|
||||
)
|
||||
|
||||
# True output values for the given input values.
|
||||
output = numpy.array(([0], [1], [1], [0], [1], [0], [0], [1]), dtype=numpy.float64)
|
||||
output = np.array(([0], [1], [1], [0], [1], [0], [0], [1]), dtype=np.float64)
|
||||
|
||||
# Calling neural network class.
|
||||
neural_network = TwoHiddenLayerNeuralNetwork(
|
||||
|
@ -290,7 +288,7 @@ def example() -> int:
|
|||
# Set give_loss to True if you want to see loss in every iteration.
|
||||
neural_network.train(output=output, iterations=10, give_loss=False)
|
||||
|
||||
return neural_network.predict(numpy.array(([1, 1, 1]), dtype=numpy.float64))
|
||||
return neural_network.predict(np.array(([1, 1, 1]), dtype=np.float64))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
|
@ -6,7 +6,6 @@ lint.ignore = [ # `ruff rule S101` for a description of that rule
|
|||
"EM101", # Exception must not use a string literal, assign to variable first
|
||||
"EXE001", # Shebang is present but file is not executable" -- FIX ME
|
||||
"G004", # Logging statement uses f-string
|
||||
"ICN001", # `matplotlib.pyplot` should be imported as `plt` -- FIX ME
|
||||
"INP001", # File `x/y/z.py` is part of an implicit namespace package. Add an `__init__.py`. -- FIX ME
|
||||
"NPY002", # Replace legacy `np.random.choice` call with `np.random.Generator` -- FIX ME
|
||||
"PGH003", # Use specific rule codes when ignoring type issues -- FIX ME
|
||||
|
|
Loading…
Reference in New Issue
Block a user