Add Binomial Heap (#1146)

* Binomial Heap

Implementation of Binomial Heap. Reference: Advanced Data Structures, Peter Brass

* Update binomial_heap.py

* Update binomial_heap.py

* Update binomial_heap.py

- Fuller documentation of binomial heap
- Update unit tests
- Replace printing method by overwriting __str__()

* Update binomial_heap.py

- Added more tests
- Added to the documentation
- Stylistic editing
- mergeHeaps now also returns a reference to the merged heap
- added a preOrder function that returns a list with the preorder of the heap

* Update binomial_heap.py

Changed the unit tests structure

* Turned the tests into doctests
This commit is contained in:
KirilBangachev 2019-09-05 08:58:38 +03:00 committed by Christian Clauss
parent a4ed40be86
commit f31a812c46

View File

@ -0,0 +1,442 @@
"""
Binomial Heap
Reference: Advanced Data Structures, Peter Brass
"""
class Node:
"""
Node in a doubly-linked binomial tree, containing:
- value
- size of left subtree
- link to left, right and parent nodes
"""
def __init__(self, val):
self.val = val
# Number of nodes in left subtree
self.left_tree_size = 0
self.left = None
self.right = None
self.parent = None
def mergeTrees(self, other):
"""
In-place merge of two binomial trees of equal size.
Returns the root of the resulting tree
"""
assert (
self.left_tree_size == other.left_tree_size
), "Unequal Sizes of Blocks"
if self.val < other.val:
other.left = self.right
other.parent = None
if self.right:
self.right.parent = other
self.right = other
self.left_tree_size = (
self.left_tree_size * 2 + 1
)
return self
else:
self.left = other.right
self.parent = None
if other.right:
other.right.parent = self
other.right = self
other.left_tree_size = (
other.left_tree_size * 2 + 1
)
return other
class BinomialHeap:
"""
Min-oriented priority queue implemented with the Binomial Heap data
structure implemented with the BinomialHeap class. It supports:
- Insert element in a heap with n elemnts: Guaranteed logn, amoratized 1
- Merge (meld) heaps of size m and n: O(logn + logm)
- Delete Min: O(logn)
- Peek (return min without deleting it): O(1)
Example:
Create a random permutation of 30 integers to be inserted and
19 of them deleted
>>> import numpy as np
>>> permutation = np.random.permutation(list(range(30)))
Create a Heap and insert the 30 integers
__init__() test
>>> first_heap = BinomialHeap()
30 inserts - insert() test
>>> for number in permutation:
... first_heap.insert(number)
Size test
>>> print(first_heap.size)
30
Deleting - delete() test
>>> for i in range(25):
... print(first_heap.deleteMin(), end=" ")
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Create a new Heap
>>> second_heap = BinomialHeap()
>>> vals = [17, 20, 31, 34]
>>> for value in vals:
... second_heap.insert(value)
The heap should have the following structure:
17
/ \
# 31
/ \
20 34
/ \ / \
# # # #
preOrder() test
>>> print(second_heap.preOrder())
[(17, 0), ('#', 1), (31, 1), (20, 2), ('#', 3), ('#', 3), (34, 2), ('#', 3), ('#', 3)]
printing Heap - __str__() test
>>> print(second_heap)
17
-#
-31
--20
---#
---#
--34
---#
---#
mergeHeaps() test
>>> merged = second_heap.mergeHeaps(first_heap)
>>> merged.peek()
17
values in merged heap; (merge is inplace)
>>> while not first_heap.isEmpty():
... print(first_heap.deleteMin(), end=" ")
17 20 25 26 27 28 29 31 34
"""
def __init__(
self, bottom_root=None, min_node=None, heap_size=0
):
self.size = heap_size
self.bottom_root = bottom_root
self.min_node = min_node
def mergeHeaps(self, other):
"""
In-place merge of two binomial heaps.
Both of them become the resulting merged heap
"""
# Empty heaps corner cases
if other.size == 0:
return
if self.size == 0:
self.size = other.size
self.bottom_root = other.bottom_root
self.min_node = other.min_node
return
# Update size
self.size = self.size + other.size
# Update min.node
if self.min_node.val > other.min_node.val:
self.min_node = other.min_node
# Merge
# Order roots by left_subtree_size
combined_roots_list = []
i, j = self.bottom_root, other.bottom_root
while i or j:
if i and (
(not j)
or i.left_tree_size < j.left_tree_size
):
combined_roots_list.append((i, True))
i = i.parent
else:
combined_roots_list.append((j, False))
j = j.parent
# Insert links between them
for i in range(len(combined_roots_list) - 1):
if (
combined_roots_list[i][1]
!= combined_roots_list[i + 1][1]
):
combined_roots_list[i][
0
].parent = combined_roots_list[i + 1][0]
combined_roots_list[i + 1][
0
].left = combined_roots_list[i][0]
# Consecutively merge roots with same left_tree_size
i = combined_roots_list[0][0]
while i.parent:
if (
(
i.left_tree_size
== i.parent.left_tree_size
)
and (not i.parent.parent)
) or (
i.left_tree_size == i.parent.left_tree_size
and i.left_tree_size
!= i.parent.parent.left_tree_size
):
# Neighbouring Nodes
previous_node = i.left
next_node = i.parent.parent
# Merging trees
i = i.mergeTrees(i.parent)
# Updating links
i.left = previous_node
i.parent = next_node
if previous_node:
previous_node.parent = i
if next_node:
next_node.left = i
else:
i = i.parent
# Updating self.bottom_root
while i.left:
i = i.left
self.bottom_root = i
# Update other
other.size = self.size
other.bottom_root = self.bottom_root
other.min_node = self.min_node
# Return the merged heap
return self
def insert(self, val):
"""
insert a value in the heap
"""
if self.size == 0:
self.bottom_root = Node(val)
self.size = 1
self.min_node = self.bottom_root
else:
# Create new node
new_node = Node(val)
# Update size
self.size += 1
# update min_node
if val < self.min_node.val:
self.min_node = new_node
# Put new_node as a bottom_root in heap
self.bottom_root.left = new_node
new_node.parent = self.bottom_root
self.bottom_root = new_node
# Consecutively merge roots with same left_tree_size
while (
self.bottom_root.parent
and self.bottom_root.left_tree_size
== self.bottom_root.parent.left_tree_size
):
# Next node
next_node = self.bottom_root.parent.parent
# Merge
self.bottom_root = self.bottom_root.mergeTrees(
self.bottom_root.parent
)
# Update Links
self.bottom_root.parent = next_node
self.bottom_root.left = None
if next_node:
next_node.left = self.bottom_root
def peek(self):
"""
return min element without deleting it
"""
return self.min_node.val
def isEmpty(self):
return self.size == 0
def deleteMin(self):
"""
delete min element and return it
"""
# assert not self.isEmpty(), "Empty Heap"
# Save minimal value
min_value = self.min_node.val
# Last element in heap corner case
if self.size == 1:
# Update size
self.size = 0
# Update bottom root
self.bottom_root = None
# Update min_node
self.min_node = None
return min_value
# No right subtree corner case
# The structure of the tree implies that this should be the bottom root
# and there is at least one other root
if self.min_node.right == None:
# Update size
self.size -= 1
# Update bottom root
self.bottom_root = self.bottom_root.parent
self.bottom_root.left = None
# Update min_node
self.min_node = self.bottom_root
i = self.bottom_root.parent
while i:
if i.val < self.min_node.val:
self.min_node = i
i = i.parent
return min_value
# General case
# Find the BinomialHeap of the right subtree of min_node
bottom_of_new = self.min_node.right
bottom_of_new.parent = None
min_of_new = bottom_of_new
size_of_new = 1
# Size, min_node and bottom_root
while bottom_of_new.left:
size_of_new = size_of_new * 2 + 1
bottom_of_new = bottom_of_new.left
if bottom_of_new.val < min_of_new.val:
min_of_new = bottom_of_new
# Corner case of single root on top left path
if (not self.min_node.left) and (
not self.min_node.parent
):
self.size = size_of_new
self.bottom_root = bottom_of_new
self.min_node = min_of_new
# print("Single root, multiple nodes case")
return min_value
# Remaining cases
# Construct heap of right subtree
newHeap = BinomialHeap(
bottom_root=bottom_of_new,
min_node=min_of_new,
heap_size=size_of_new,
)
# Update size
self.size = self.size - 1 - size_of_new
# Neighbour nodes
previous_node = self.min_node.left
next_node = self.min_node.parent
# Initialize new bottom_root and min_node
self.min_node = previous_node or next_node
self.bottom_root = next_node
# Update links of previous_node and search below for new min_node and
# bottom_root
if previous_node:
previous_node.parent = next_node
# Update bottom_root and search for min_node below
self.bottom_root = previous_node
self.min_node = previous_node
while self.bottom_root.left:
self.bottom_root = self.bottom_root.left
if self.bottom_root.val < self.min_node.val:
self.min_node = self.bottom_root
if next_node:
next_node.left = previous_node
# Search for new min_node above min_node
i = next_node
while i:
if i.val < self.min_node.val:
self.min_node = i
i = i.parent
# Merge heaps
self.mergeHeaps(newHeap)
return min_value
def preOrder(self):
"""
Returns the Pre-order representation of the heap including
values of nodes plus their level distance from the root;
Empty nodes appear as #
"""
# Find top root
top_root = self.bottom_root
while top_root.parent:
top_root = top_root.parent
# preorder
heap_preOrder = []
self.__traversal(top_root, heap_preOrder)
return heap_preOrder
def __traversal(self, curr_node, preorder, level=0):
"""
Pre-order traversal of nodes
"""
if curr_node:
preorder.append((curr_node.val, level))
self.__traversal(
curr_node.left, preorder, level + 1
)
self.__traversal(
curr_node.right, preorder, level + 1
)
else:
preorder.append(("#", level))
def __str__(self):
"""
Overwriting str for a pre-order print of nodes in heap;
Performance is poor, so use only for small examples
"""
if self.isEmpty():
return ""
preorder_heap = self.preOrder()
return "\n".join(
("-" * level + str(value))
for value, level in preorder_heap
)
# Unit Tests
if __name__ == "__main__":
import doctest
doctest.testmod()