mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 08:17:01 +00:00
Add simple neural network (#6452)
* feat: add simple foward propagation implementation * fix: add PR requested changes * feat: add code example * fix: solve pre-commit failure * feat: add doctest inside code execution * fix: PR requested changes * fix: pr requested changes Co-authored-by: Caio Cordeiro <ccordeirodemorae@apple.com>
This commit is contained in:
parent
2d3985006f
commit
f340bde6e0
63
neural_network/simple_neural_network.py
Normal file
63
neural_network/simple_neural_network.py
Normal file
|
@ -0,0 +1,63 @@
|
|||
"""
|
||||
Forward propagation explanation:
|
||||
https://towardsdatascience.com/forward-propagation-in-neural-networks-simplified-math-and-code-version-bbcfef6f9250
|
||||
"""
|
||||
|
||||
import math
|
||||
import random
|
||||
|
||||
|
||||
# Sigmoid
|
||||
def sigmoid_function(value: float, deriv: bool = False) -> float:
|
||||
"""Return the sigmoid function of a float.
|
||||
|
||||
>>> sigmoid_function(3.5)
|
||||
0.9706877692486436
|
||||
>>> sigmoid_function(3.5, True)
|
||||
-8.75
|
||||
"""
|
||||
if deriv:
|
||||
return value * (1 - value)
|
||||
return 1 / (1 + math.exp(-value))
|
||||
|
||||
|
||||
# Initial Value
|
||||
INITIAL_VALUE = 0.02
|
||||
|
||||
|
||||
def forward_propagation(expected: int, number_propagations: int) -> float:
|
||||
"""Return the value found after the forward propagation training.
|
||||
|
||||
>>> res = forward_propagation(32, 10000000)
|
||||
>>> res > 31 and res < 33
|
||||
True
|
||||
|
||||
>>> res = forward_propagation(32, 1000)
|
||||
>>> res > 31 and res < 33
|
||||
False
|
||||
"""
|
||||
|
||||
# Random weight
|
||||
weight = float(2 * (random.randint(1, 100)) - 1)
|
||||
|
||||
for _ in range(number_propagations):
|
||||
# Forward propagation
|
||||
layer_1 = sigmoid_function(INITIAL_VALUE * weight)
|
||||
# How much did we miss?
|
||||
layer_1_error = (expected / 100) - layer_1
|
||||
# Error delta
|
||||
layer_1_delta = layer_1_error * sigmoid_function(layer_1, True)
|
||||
# Update weight
|
||||
weight += INITIAL_VALUE * layer_1_delta
|
||||
|
||||
return layer_1 * 100
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
||||
|
||||
expected = int(input("Expected value: "))
|
||||
number_propagations = int(input("Number of propagations: "))
|
||||
print(forward_propagation(expected, number_propagations))
|
Loading…
Reference in New Issue
Block a user