mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-02-26 10:58:40 +00:00
Implemented Lanczos Algorithm
This commit is contained in:
parent
3e9ca92ca9
commit
f38f1a7c83
34
linear_algebra/Lanczos-algorithm.py
Normal file
34
linear_algebra/Lanczos-algorithm.py
Normal file
@ -0,0 +1,34 @@
|
|||||||
|
import numpy as np
|
||||||
|
def lanczos(A: np.ndarray) -> ([float], [float]):
|
||||||
|
"""
|
||||||
|
Implements the Lanczos algorithm for a symmetric matrix.
|
||||||
|
|
||||||
|
Parameters:
|
||||||
|
-----------
|
||||||
|
matrix : numpy.ndarray
|
||||||
|
Symmetric matrix of size (n, n).
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
--------
|
||||||
|
alpha : [float]
|
||||||
|
List of diagonal elements of the resulting tridiagonal matrix.
|
||||||
|
beta : [float]
|
||||||
|
List of off-diagonal elements of the resulting tridiagonal matrix.
|
||||||
|
"""
|
||||||
|
n = A.shape[0]
|
||||||
|
V = np.zeros((n, n))
|
||||||
|
V[:, 0] = np.random.randn(n)
|
||||||
|
V[:, 0] /= np.linalg.norm(V[:, 0])
|
||||||
|
alpha = []
|
||||||
|
beta = []
|
||||||
|
for j in range(n):
|
||||||
|
w = np.dot(A, V[:, j])
|
||||||
|
alpha.append(np.dot(w, V[:, j]))
|
||||||
|
if j == n - 1:
|
||||||
|
break
|
||||||
|
w -= alpha[j] * V[:, j]
|
||||||
|
if j > 0:
|
||||||
|
w -= beta[j - 1] * V[:, j - 1]
|
||||||
|
beta.append(np.linalg.norm(w))
|
||||||
|
V[:, j + 1] = w / beta[j]
|
||||||
|
return alpha, beta
|
Loading…
x
Reference in New Issue
Block a user