This commit is contained in:
Giulio Tantaro 2024-11-20 00:45:52 +08:00 committed by GitHub
commit f397e28164
No known key found for this signature in database
GPG Key ID: B5690EEEBB952194
2 changed files with 86 additions and 2 deletions

View File

@ -1,14 +1,47 @@
def print_dist(dist, v): def print_dist(dist, v):
"""
Print vertex distance
Examples:
>>> print_dist([float('inf'),float('inf'),float('inf')], 3)
<BLANKLINE>
Vertex Distance
0 INF
1 INF
2 INF
>>> print_dist([2.0,6.0,10.0,3.0], 4)
<BLANKLINE>
Vertex Distance
0 2
1 6
2 10
3 3
>>> print_dist([], 4)
Traceback (most recent call last):
...
IndexError: list index out of range
"""
print("\nVertex Distance") print("\nVertex Distance")
for i in range(v): for i in range(v):
if dist[i] != float("inf"): if dist[i] != float("inf"):
print(i, "\t", int(dist[i]), end="\t") print(i, " ", int(dist[i]), end="")
else: else:
print(i, "\t", "INF", end="\t") print(i, " ", "INF", end="")
print() print()
def min_dist(mdist, vset, v): def min_dist(mdist, vset, v):
"""
Finds the index of the node with the minimum distance between no-visited nodes
Examples:
>>> dist = [0.0, float('inf'), float('inf'), float('inf')]
>>> set = [False, False, False, False]
>>> min_dist(dist, set, 4)
0
>>> min_dist([], [], 0)
-1
"""
min_val = float("inf") min_val = float("inf")
min_ind = -1 min_ind = -1
for i in range(v): for i in range(v):
@ -19,6 +52,30 @@ def min_dist(mdist, vset, v):
def dijkstra(graph, v, src): def dijkstra(graph, v, src):
"""
Dijkstra's algorithm to calculate the shortest distances from the src source node
to all other nodes in a graph represented as an adjacency matrix.
Examples:
>>> G1 = [[0.0, 6.0, 2.0, float('inf')],
... [float('inf'), 0.0, 9.0, 1.0],
... [float('inf'), float('inf'), 0.0, 3.0],
... [float('inf'), float('inf'), float('inf'), 0.0]]
>>> dijkstra(G1, 4, 5)
Traceback (most recent call last):
...
IndexError: list assignment index out of range
>>> G2 = [[0.0, 6.0, 2.0, float('inf')],
... [float('inf'), 0.0, 9.0, 1.0],
... [float('inf'), float('inf'), 0.0, 3.0],
... [float('inf'), float('inf'), float('inf'), 0.0]]
>>> dijkstra(G2, 4, 0)
<BLANKLINE>
Vertex Distance
0 0
1 6
2 2
"""
mdist = [float("inf") for _ in range(v)] mdist = [float("inf") for _ in range(v)]
vset = [False for _ in range(v)] vset = [False for _ in range(v)]
mdist[src] = 0.0 mdist[src] = 0.0
@ -39,6 +96,10 @@ def dijkstra(graph, v, src):
if __name__ == "__main__": if __name__ == "__main__":
import doctest
doctest.testmod(verbose=True)
V = int(input("Enter number of vertices: ").strip()) V = int(input("Enter number of vertices: ").strip())
E = int(input("Enter number of edges: ").strip()) E = int(input("Enter number of edges: ").strip())

View File

@ -1,4 +1,27 @@
def quick_sort_3partition(sorting: list, left: int, right: int) -> None: def quick_sort_3partition(sorting: list, left: int, right: int) -> None:
""" "
Python implementation of quick sort algorithm with 3-way partition.
The idea of 3-way quick sort is based on "Dutch National Flag algorithm".
:param sorting: sort list
:param left: left endpoint of sorting
:param right: right endpoint of sorting
:return: None
Examples:
>>> array1 = [5, -1, -1, 5, 5, 24, 0]
>>> quick_sort_3partition(array1, 0, 6)
>>> array1
[-1, -1, 0, 5, 5, 5, 24]
>>> array2 = [9, 0, 2, 6]
>>> quick_sort_3partition(array2, 0, 3)
>>> array2
[0, 2, 6, 9]
>>> array3 = []
>>> quick_sort_3partition(array3, 0, 0)
>>> array3
[]
"""
if right <= left: if right <= left:
return return
a = i = left a = i = left