mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 08:17:01 +00:00
Added Leaky ReLU Activation Function (#8962)
* Added Leaky ReLU activation function * Added Leaky ReLU activation function * Added Leaky ReLU activation function * Formatting and spelling fixes done
This commit is contained in:
parent
fd7cc4cf8e
commit
f6b12420ce
|
@ -0,0 +1,39 @@
|
|||
"""
|
||||
Leaky Rectified Linear Unit (Leaky ReLU)
|
||||
|
||||
Use Case: Leaky ReLU addresses the problem of the vanishing gradient.
|
||||
For more detailed information, you can refer to the following link:
|
||||
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)#Leaky_ReLU
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def leaky_rectified_linear_unit(vector: np.ndarray, alpha: float) -> np.ndarray:
|
||||
"""
|
||||
Implements the LeakyReLU activation function.
|
||||
|
||||
Parameters:
|
||||
vector (np.ndarray): The input array for LeakyReLU activation.
|
||||
alpha (float): The slope for negative values.
|
||||
|
||||
Returns:
|
||||
np.ndarray: The input array after applying the LeakyReLU activation.
|
||||
|
||||
Formula: f(x) = x if x > 0 else f(x) = alpha * x
|
||||
|
||||
Examples:
|
||||
>>> leaky_rectified_linear_unit(vector=np.array([2.3,0.6,-2,-3.8]), alpha=0.3)
|
||||
array([ 2.3 , 0.6 , -0.6 , -1.14])
|
||||
|
||||
>>> leaky_rectified_linear_unit(np.array([-9.2, -0.3, 0.45, -4.56]), alpha=0.067)
|
||||
array([-0.6164 , -0.0201 , 0.45 , -0.30552])
|
||||
|
||||
"""
|
||||
return np.where(vector > 0, vector, alpha * vector)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
import doctest
|
||||
|
||||
doctest.testmod()
|
Loading…
Reference in New Issue
Block a user