mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 08:17:01 +00:00
Unify primality checking (#6228)
* renames prime functions and occurances in comments * changes implementation of primality testing to be uniform * adds static typing as per conventions * updating DIRECTORY.md Co-authored-by: github-actions <${GITHUB_ACTOR}@users.noreply.github.com>
This commit is contained in:
parent
dad789d903
commit
f7c58e4c4b
|
@ -444,7 +444,6 @@
|
|||
* [Scoring Functions](machine_learning/scoring_functions.py)
|
||||
* [Sequential Minimum Optimization](machine_learning/sequential_minimum_optimization.py)
|
||||
* [Similarity Search](machine_learning/similarity_search.py)
|
||||
* [Support Vector Machines](machine_learning/support_vector_machines.py)
|
||||
* [Word Frequency Functions](machine_learning/word_frequency_functions.py)
|
||||
|
||||
## Maths
|
||||
|
|
|
@ -1,6 +1,6 @@
|
|||
#!/usr/bin/env python3
|
||||
from .hash_table import HashTable
|
||||
from .number_theory.prime_numbers import check_prime, next_prime
|
||||
from .number_theory.prime_numbers import is_prime, next_prime
|
||||
|
||||
|
||||
class DoubleHash(HashTable):
|
||||
|
@ -15,7 +15,7 @@ class DoubleHash(HashTable):
|
|||
|
||||
next_prime_gt = (
|
||||
next_prime(value % self.size_table)
|
||||
if not check_prime(value % self.size_table)
|
||||
if not is_prime(value % self.size_table)
|
||||
else value % self.size_table
|
||||
) # gt = bigger than
|
||||
return next_prime_gt - (data % next_prime_gt)
|
||||
|
|
|
@ -3,25 +3,55 @@
|
|||
module to operations with prime numbers
|
||||
"""
|
||||
|
||||
import math
|
||||
|
||||
def check_prime(number):
|
||||
"""
|
||||
it's not the best solution
|
||||
"""
|
||||
special_non_primes = [0, 1, 2]
|
||||
if number in special_non_primes[:2]:
|
||||
return 2
|
||||
elif number == special_non_primes[-1]:
|
||||
return 3
|
||||
|
||||
return all(number % i for i in range(2, number))
|
||||
def is_prime(number: int) -> bool:
|
||||
"""Checks to see if a number is a prime in O(sqrt(n)).
|
||||
|
||||
A number is prime if it has exactly two factors: 1 and itself.
|
||||
|
||||
>>> is_prime(0)
|
||||
False
|
||||
>>> is_prime(1)
|
||||
False
|
||||
>>> is_prime(2)
|
||||
True
|
||||
>>> is_prime(3)
|
||||
True
|
||||
>>> is_prime(27)
|
||||
False
|
||||
>>> is_prime(87)
|
||||
False
|
||||
>>> is_prime(563)
|
||||
True
|
||||
>>> is_prime(2999)
|
||||
True
|
||||
>>> is_prime(67483)
|
||||
False
|
||||
"""
|
||||
|
||||
# precondition
|
||||
assert isinstance(number, int) and (
|
||||
number >= 0
|
||||
), "'number' must been an int and positive"
|
||||
|
||||
if 1 < number < 4:
|
||||
# 2 and 3 are primes
|
||||
return True
|
||||
elif number < 2 or not number % 2:
|
||||
# Negatives, 0, 1 and all even numbers are not primes
|
||||
return False
|
||||
|
||||
odd_numbers = range(3, int(math.sqrt(number) + 1), 2)
|
||||
return not any(not number % i for i in odd_numbers)
|
||||
|
||||
|
||||
def next_prime(value, factor=1, **kwargs):
|
||||
value = factor * value
|
||||
first_value_val = value
|
||||
|
||||
while not check_prime(value):
|
||||
while not is_prime(value):
|
||||
value += 1 if not ("desc" in kwargs.keys() and kwargs["desc"] is True) else -1
|
||||
|
||||
if value == first_value_val:
|
||||
|
|
|
@ -4,31 +4,36 @@ import math
|
|||
import unittest
|
||||
|
||||
|
||||
def prime_check(number: int) -> bool:
|
||||
def is_prime(number: int) -> bool:
|
||||
"""Checks to see if a number is a prime in O(sqrt(n)).
|
||||
|
||||
A number is prime if it has exactly two factors: 1 and itself.
|
||||
|
||||
>>> prime_check(0)
|
||||
>>> is_prime(0)
|
||||
False
|
||||
>>> prime_check(1)
|
||||
>>> is_prime(1)
|
||||
False
|
||||
>>> prime_check(2)
|
||||
>>> is_prime(2)
|
||||
True
|
||||
>>> prime_check(3)
|
||||
>>> is_prime(3)
|
||||
True
|
||||
>>> prime_check(27)
|
||||
>>> is_prime(27)
|
||||
False
|
||||
>>> prime_check(87)
|
||||
>>> is_prime(87)
|
||||
False
|
||||
>>> prime_check(563)
|
||||
>>> is_prime(563)
|
||||
True
|
||||
>>> prime_check(2999)
|
||||
>>> is_prime(2999)
|
||||
True
|
||||
>>> prime_check(67483)
|
||||
>>> is_prime(67483)
|
||||
False
|
||||
"""
|
||||
|
||||
# precondition
|
||||
assert isinstance(number, int) and (
|
||||
number >= 0
|
||||
), "'number' must been an int and positive"
|
||||
|
||||
if 1 < number < 4:
|
||||
# 2 and 3 are primes
|
||||
return True
|
||||
|
@ -42,35 +47,35 @@ def prime_check(number: int) -> bool:
|
|||
|
||||
class Test(unittest.TestCase):
|
||||
def test_primes(self):
|
||||
self.assertTrue(prime_check(2))
|
||||
self.assertTrue(prime_check(3))
|
||||
self.assertTrue(prime_check(5))
|
||||
self.assertTrue(prime_check(7))
|
||||
self.assertTrue(prime_check(11))
|
||||
self.assertTrue(prime_check(13))
|
||||
self.assertTrue(prime_check(17))
|
||||
self.assertTrue(prime_check(19))
|
||||
self.assertTrue(prime_check(23))
|
||||
self.assertTrue(prime_check(29))
|
||||
self.assertTrue(is_prime(2))
|
||||
self.assertTrue(is_prime(3))
|
||||
self.assertTrue(is_prime(5))
|
||||
self.assertTrue(is_prime(7))
|
||||
self.assertTrue(is_prime(11))
|
||||
self.assertTrue(is_prime(13))
|
||||
self.assertTrue(is_prime(17))
|
||||
self.assertTrue(is_prime(19))
|
||||
self.assertTrue(is_prime(23))
|
||||
self.assertTrue(is_prime(29))
|
||||
|
||||
def test_not_primes(self):
|
||||
self.assertFalse(
|
||||
prime_check(-19),
|
||||
is_prime(-19),
|
||||
"Negative numbers are excluded by definition of prime numbers.",
|
||||
)
|
||||
self.assertFalse(
|
||||
prime_check(0),
|
||||
is_prime(0),
|
||||
"Zero doesn't have any positive factors, primes must have exactly two.",
|
||||
)
|
||||
self.assertFalse(
|
||||
prime_check(1),
|
||||
is_prime(1),
|
||||
"One only has 1 positive factor, primes must have exactly two.",
|
||||
)
|
||||
self.assertFalse(prime_check(2 * 2))
|
||||
self.assertFalse(prime_check(2 * 3))
|
||||
self.assertFalse(prime_check(3 * 3))
|
||||
self.assertFalse(prime_check(3 * 5))
|
||||
self.assertFalse(prime_check(3 * 5 * 7))
|
||||
self.assertFalse(is_prime(2 * 2))
|
||||
self.assertFalse(is_prime(2 * 3))
|
||||
self.assertFalse(is_prime(3 * 3))
|
||||
self.assertFalse(is_prime(3 * 5))
|
||||
self.assertFalse(is_prime(3 * 5 * 7))
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
|
|
@ -41,7 +41,7 @@ goldbach(number) // Goldbach's assumption
|
|||
from math import sqrt
|
||||
|
||||
|
||||
def isPrime(number):
|
||||
def is_prime(number: int) -> bool:
|
||||
"""
|
||||
input: positive integer 'number'
|
||||
returns true if 'number' is prime otherwise false.
|
||||
|
@ -129,7 +129,7 @@ def getPrimeNumbers(N):
|
|||
# if a number is prime then appends to list 'ans'
|
||||
for number in range(2, N + 1):
|
||||
|
||||
if isPrime(number):
|
||||
if is_prime(number):
|
||||
|
||||
ans.append(number)
|
||||
|
||||
|
@ -164,11 +164,11 @@ def primeFactorization(number):
|
|||
ans.append(number)
|
||||
|
||||
# if 'number' not prime then builds the prime factorization of 'number'
|
||||
elif not isPrime(number):
|
||||
elif not is_prime(number):
|
||||
|
||||
while quotient != 1:
|
||||
|
||||
if isPrime(factor) and (quotient % factor == 0):
|
||||
if is_prime(factor) and (quotient % factor == 0):
|
||||
ans.append(factor)
|
||||
quotient /= factor
|
||||
else:
|
||||
|
@ -317,8 +317,8 @@ def goldbach(number):
|
|||
isinstance(ans, list)
|
||||
and (len(ans) == 2)
|
||||
and (ans[0] + ans[1] == number)
|
||||
and isPrime(ans[0])
|
||||
and isPrime(ans[1])
|
||||
and is_prime(ans[0])
|
||||
and is_prime(ans[1])
|
||||
), "'ans' must contains two primes. And sum of elements must been eq 'number'"
|
||||
|
||||
return ans
|
||||
|
@ -462,11 +462,11 @@ def getPrime(n):
|
|||
|
||||
# if ans not prime then
|
||||
# runs to the next prime number.
|
||||
while not isPrime(ans):
|
||||
while not is_prime(ans):
|
||||
ans += 1
|
||||
|
||||
# precondition
|
||||
assert isinstance(ans, int) and isPrime(
|
||||
assert isinstance(ans, int) and is_prime(
|
||||
ans
|
||||
), "'ans' must been a prime number and from type int"
|
||||
|
||||
|
@ -486,7 +486,7 @@ def getPrimesBetween(pNumber1, pNumber2):
|
|||
|
||||
# precondition
|
||||
assert (
|
||||
isPrime(pNumber1) and isPrime(pNumber2) and (pNumber1 < pNumber2)
|
||||
is_prime(pNumber1) and is_prime(pNumber2) and (pNumber1 < pNumber2)
|
||||
), "The arguments must been prime numbers and 'pNumber1' < 'pNumber2'"
|
||||
|
||||
number = pNumber1 + 1 # jump to the next number
|
||||
|
@ -495,7 +495,7 @@ def getPrimesBetween(pNumber1, pNumber2):
|
|||
|
||||
# if number is not prime then
|
||||
# fetch the next prime number.
|
||||
while not isPrime(number):
|
||||
while not is_prime(number):
|
||||
number += 1
|
||||
|
||||
while number < pNumber2:
|
||||
|
@ -505,7 +505,7 @@ def getPrimesBetween(pNumber1, pNumber2):
|
|||
number += 1
|
||||
|
||||
# fetch the next prime number.
|
||||
while not isPrime(number):
|
||||
while not is_prime(number):
|
||||
number += 1
|
||||
|
||||
# precondition
|
||||
|
|
Loading…
Reference in New Issue
Block a user