diff --git a/machine_learning/multinomial_naive_bayes_classifier.py b/machine_learning/multinomial_naive_bayes_classifier.py index 56c730529..d99b5ecae 100644 --- a/machine_learning/multinomial_naive_bayes_classifier.py +++ b/machine_learning/multinomial_naive_bayes_classifier.py @@ -71,10 +71,14 @@ class MultinomialNBClassifier: data_class_i = data[grouped_indices[class_i]] prior_class_i = data_class_i.shape[0] / n_examples self.priors[i] = prior_class_i - tot_features_count = data_class_i.sum() # count of all features in class_i - features_count = np.array(data_class_i.sum(axis=0))[0] # count of each feature x_j in class_i + tot_features_count = data_class_i.sum() # count of all features in class_i + features_count = np.array(data_class_i.sum(axis=0))[ + 0 + ] # count of each feature x_j in class_i for j, n_j in enumerate(features_count): - self.features_probs[i][j] = (self.alpha + n_j) / (tot_features_count + self.alpha * n_features) + self.features_probs[i][j] = (self.alpha + n_j) / ( + tot_features_count + self.alpha * n_features + ) def predict(self, data: sparse.csr_matrix) -> np.array: """ @@ -106,7 +110,10 @@ class MultinomialNBClassifier: log_priors = np.log(self.priors) for instance in data: theta = instance.multiply(log_features_probs).sum(axis=1) - likelihood = [log_prior_class_i + theta[i] for i, log_prior_class_i in enumerate(log_priors)] + likelihood = [ + log_prior_class_i + theta[i] + for i, log_prior_class_i in enumerate(log_priors) + ] y_pred.append(self.classes[np.argmax(likelihood)]) return np.array(y_pred) @@ -115,13 +122,13 @@ def main() -> None: """ Performs the text classification on the twenty_newsgroup dataset from sklearn """ - newsgroups_train = fetch_20newsgroups(subset='train') - newsgroups_test = fetch_20newsgroups(subset='test') - x_train = newsgroups_train['data'] - y_train = newsgroups_train['target'] - x_test = newsgroups_test['data'] - y_test = newsgroups_test['target'] - vectorizer = TfidfVectorizer(stop_words='english') + newsgroups_train = fetch_20newsgroups(subset="train") + newsgroups_test = fetch_20newsgroups(subset="test") + x_train = newsgroups_train["data"] + y_train = newsgroups_train["target"] + x_test = newsgroups_test["data"] + y_test = newsgroups_test["target"] + vectorizer = TfidfVectorizer(stop_words="english") x_train = vectorizer.fit_transform(x_train) x_test = vectorizer.transform(x_test) @@ -130,10 +137,12 @@ def main() -> None: model.fit(x_train, y_train) y_pred = model.predict(x_test) - print("Accuracy of naive bayes text classifier: " + str(accuracy_score(y_test, y_pred))) + print( + "Accuracy of naive bayes text classifier: " + + str(accuracy_score(y_test, y_pred)) + ) if __name__ == "__main__": main() doctest.testmod() -