Merge branch 'master' of github.com:TheAlgorithms/Python into bug-fix-expression-tree

This commit is contained in:
Amirsoroush 2023-08-01 07:02:05 +03:00
commit fa927d5ff7
168 changed files with 5384 additions and 1325 deletions

8
.devcontainer/Dockerfile Normal file
View File

@ -0,0 +1,8 @@
# https://github.com/microsoft/vscode-dev-containers/blob/main/containers/python-3/README.md
ARG VARIANT=3.11-bookworm
FROM mcr.microsoft.com/vscode/devcontainers/python:${VARIANT}
COPY requirements.txt /tmp/pip-tmp/
RUN python3 -m pip install --upgrade pip \
&& python3 -m pip install --no-cache-dir install -r /tmp/pip-tmp/requirements.txt \
&& pipx install pre-commit ruff \
&& pre-commit install

View File

@ -0,0 +1,42 @@
{
"name": "Python 3",
"build": {
"dockerfile": "Dockerfile",
"context": "..",
"args": {
// Update 'VARIANT' to pick a Python version: 3, 3.10, 3.9, 3.8, 3.7, 3.6
// Append -bullseye or -buster to pin to an OS version.
// Use -bullseye variants on local on arm64/Apple Silicon.
"VARIANT": "3.11-bookworm",
}
},
// Configure tool-specific properties.
"customizations": {
// Configure properties specific to VS Code.
"vscode": {
// Set *default* container specific settings.json values on container create.
"settings": {
"python.defaultInterpreterPath": "/usr/local/bin/python",
"python.linting.enabled": true,
"python.formatting.blackPath": "/usr/local/py-utils/bin/black",
"python.linting.mypyPath": "/usr/local/py-utils/bin/mypy"
},
// Add the IDs of extensions you want installed when the container is created.
"extensions": [
"ms-python.python",
"ms-python.vscode-pylance"
]
}
},
// Use 'forwardPorts' to make a list of ports inside the container available locally.
// "forwardPorts": [],
// Use 'postCreateCommand' to run commands after the container is created.
// "postCreateCommand": "pip3 install --user -r requirements.txt",
// Comment out to connect as root instead. More info: https://aka.ms/vscode-remote/containers/non-root.
"remoteUser": "vscode"
}

View File

@ -17,4 +17,4 @@
* [ ] All function parameters and return values are annotated with Python [type hints](https://docs.python.org/3/library/typing.html).
* [ ] All functions have [doctests](https://docs.python.org/3/library/doctest.html) that pass the automated testing.
* [ ] All new algorithms include at least one URL that points to Wikipedia or another similar explanation.
* [ ] If this pull request resolves one or more open issues then the commit message contains `Fixes: #{$ISSUE_NO}`.
* [ ] If this pull request resolves one or more open issues then the description above includes the issue number(s) with a [closing keyword](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue): "Fixes #ISSUE-NUMBER".

View File

@ -22,11 +22,9 @@ jobs:
python -m pip install --upgrade pip setuptools six wheel
python -m pip install pytest-cov -r requirements.txt
- name: Run tests
# See: #6591 for re-enabling tests on Python v3.11
# TODO: #8818 Re-enable quantum tests
run: pytest
--ignore=computer_vision/cnn_classification.py
--ignore=machine_learning/lstm/lstm_prediction.py
--ignore=quantum/
--ignore=quantum/q_fourier_transform.py
--ignore=project_euler/
--ignore=scripts/validate_solutions.py
--cov-report=term-missing:skip-covered

View File

@ -15,25 +15,25 @@ repos:
hooks:
- id: auto-walrus
- repo: https://github.com/charliermarsh/ruff-pre-commit
rev: v0.0.262
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.0.281
hooks:
- id: ruff
- repo: https://github.com/psf/black
rev: 23.3.0
rev: 23.7.0
hooks:
- id: black
- repo: https://github.com/codespell-project/codespell
rev: v2.2.4
rev: v2.2.5
hooks:
- id: codespell
additional_dependencies:
- tomli
- repo: https://github.com/tox-dev/pyproject-fmt
rev: "0.10.0"
rev: "0.13.0"
hooks:
- id: pyproject-fmt
@ -46,12 +46,12 @@ repos:
pass_filenames: false
- repo: https://github.com/abravalheri/validate-pyproject
rev: v0.12.2
rev: v0.13
hooks:
- id: validate-pyproject
- repo: https://github.com/pre-commit/mirrors-mypy
rev: v1.2.0
rev: v1.4.1
hooks:
- id: mypy
args:

5
.vscode/settings.json vendored Normal file
View File

@ -0,0 +1,5 @@
{
"githubPullRequests.ignoredPullRequestBranches": [
"master"
]
}

View File

@ -25,7 +25,14 @@ We appreciate any contribution, from fixing a grammar mistake in a comment to im
Your contribution will be tested by our [automated testing on GitHub Actions](https://github.com/TheAlgorithms/Python/actions) to save time and mental energy. After you have submitted your pull request, you should see the GitHub Actions tests start to run at the bottom of your submission page. If those tests fail, then click on the ___details___ button try to read through the GitHub Actions output to understand the failure. If you do not understand, please leave a comment on your submission page and a community member will try to help.
Please help us keep our issue list small by adding fixes: #{$ISSUE_NO} to the commit message of pull requests that resolve open issues. GitHub will use this tag to auto-close the issue when the PR is merged.
If you are interested in resolving an [open issue](https://github.com/TheAlgorithms/Python/issues), simply make a pull request with your proposed fix. __We do not assign issues in this repo__ so please do not ask for permission to work on an issue.
Please help us keep our issue list small by adding `Fixes #{$ISSUE_NUMBER}` to the description of pull requests that resolve open issues.
For example, if your pull request fixes issue #10, then please add the following to its description:
```
Fixes #10
```
GitHub will use this tag to [auto-close the issue](https://docs.github.com/en/issues/tracking-your-work-with-issues/linking-a-pull-request-to-an-issue) if and when the PR is merged.
#### What is an Algorithm?

View File

@ -29,6 +29,7 @@
* [Minmax](backtracking/minmax.py)
* [N Queens](backtracking/n_queens.py)
* [N Queens Math](backtracking/n_queens_math.py)
* [Power Sum](backtracking/power_sum.py)
* [Rat In Maze](backtracking/rat_in_maze.py)
* [Sudoku](backtracking/sudoku.py)
* [Sum Of Subsets](backtracking/sum_of_subsets.py)
@ -146,6 +147,7 @@
* [Decimal To Binary Recursion](conversions/decimal_to_binary_recursion.py)
* [Decimal To Hexadecimal](conversions/decimal_to_hexadecimal.py)
* [Decimal To Octal](conversions/decimal_to_octal.py)
* [Energy Conversions](conversions/energy_conversions.py)
* [Excel Title To Column](conversions/excel_title_to_column.py)
* [Hex To Bin](conversions/hex_to_bin.py)
* [Hexadecimal To Decimal](conversions/hexadecimal_to_decimal.py)
@ -166,6 +168,7 @@
* Arrays
* [Permutations](data_structures/arrays/permutations.py)
* [Prefix Sum](data_structures/arrays/prefix_sum.py)
* [Product Sum](data_structures/arrays/product_sum.py)
* Binary Tree
* [Avl Tree](data_structures/binary_tree/avl_tree.py)
* [Basic Binary Tree](data_structures/binary_tree/basic_binary_tree.py)
@ -233,8 +236,8 @@
* [Double Ended Queue](data_structures/queue/double_ended_queue.py)
* [Linked Queue](data_structures/queue/linked_queue.py)
* [Priority Queue Using List](data_structures/queue/priority_queue_using_list.py)
* [Queue By List](data_structures/queue/queue_by_list.py)
* [Queue By Two Stacks](data_structures/queue/queue_by_two_stacks.py)
* [Queue On List](data_structures/queue/queue_on_list.py)
* [Queue On Pseudo Stack](data_structures/queue/queue_on_pseudo_stack.py)
* Stacks
* [Balanced Parentheses](data_structures/stacks/balanced_parentheses.py)
@ -290,7 +293,7 @@
* [Inversions](divide_and_conquer/inversions.py)
* [Kth Order Statistic](divide_and_conquer/kth_order_statistic.py)
* [Max Difference Pair](divide_and_conquer/max_difference_pair.py)
* [Max Subarray Sum](divide_and_conquer/max_subarray_sum.py)
* [Max Subarray](divide_and_conquer/max_subarray.py)
* [Mergesort](divide_and_conquer/mergesort.py)
* [Peak](divide_and_conquer/peak.py)
* [Power](divide_and_conquer/power.py)
@ -321,8 +324,7 @@
* [Matrix Chain Order](dynamic_programming/matrix_chain_order.py)
* [Max Non Adjacent Sum](dynamic_programming/max_non_adjacent_sum.py)
* [Max Product Subarray](dynamic_programming/max_product_subarray.py)
* [Max Sub Array](dynamic_programming/max_sub_array.py)
* [Max Sum Contiguous Subsequence](dynamic_programming/max_sum_contiguous_subsequence.py)
* [Max Subarray Sum](dynamic_programming/max_subarray_sum.py)
* [Min Distance Up Bottom](dynamic_programming/min_distance_up_bottom.py)
* [Minimum Coin Change](dynamic_programming/minimum_coin_change.py)
* [Minimum Cost Path](dynamic_programming/minimum_cost_path.py)
@ -363,6 +365,7 @@
## Financial
* [Equated Monthly Installments](financial/equated_monthly_installments.py)
* [Interest](financial/interest.py)
* [Present Value](financial/present_value.py)
* [Price Plus Tax](financial/price_plus_tax.py)
## Fractals
@ -409,6 +412,7 @@
* [Dijkstra 2](graphs/dijkstra_2.py)
* [Dijkstra Algorithm](graphs/dijkstra_algorithm.py)
* [Dijkstra Alternate](graphs/dijkstra_alternate.py)
* [Dijkstra Binary Grid](graphs/dijkstra_binary_grid.py)
* [Dinic](graphs/dinic.py)
* [Directed And Undirected (Weighted) Graph](graphs/directed_and_undirected_(weighted)_graph.py)
* [Edmonds Karp Multiple Source And Sink](graphs/edmonds_karp_multiple_source_and_sink.py)
@ -418,8 +422,9 @@
* [Frequent Pattern Graph Miner](graphs/frequent_pattern_graph_miner.py)
* [G Topological Sort](graphs/g_topological_sort.py)
* [Gale Shapley Bigraph](graphs/gale_shapley_bigraph.py)
* [Graph Adjacency List](graphs/graph_adjacency_list.py)
* [Graph Adjacency Matrix](graphs/graph_adjacency_matrix.py)
* [Graph List](graphs/graph_list.py)
* [Graph Matrix](graphs/graph_matrix.py)
* [Graphs Floyd Warshall](graphs/graphs_floyd_warshall.py)
* [Greedy Best First](graphs/greedy_best_first.py)
* [Greedy Min Vertex Cover](graphs/greedy_min_vertex_cover.py)
@ -448,6 +453,7 @@
## Greedy Methods
* [Fractional Knapsack](greedy_methods/fractional_knapsack.py)
* [Fractional Knapsack 2](greedy_methods/fractional_knapsack_2.py)
* [Minimum Waiting Time](greedy_methods/minimum_waiting_time.py)
* [Optimal Merge Pattern](greedy_methods/optimal_merge_pattern.py)
## Hashes
@ -477,11 +483,15 @@
* [Lib](linear_algebra/src/lib.py)
* [Polynom For Points](linear_algebra/src/polynom_for_points.py)
* [Power Iteration](linear_algebra/src/power_iteration.py)
* [Rank Of Matrix](linear_algebra/src/rank_of_matrix.py)
* [Rayleigh Quotient](linear_algebra/src/rayleigh_quotient.py)
* [Schur Complement](linear_algebra/src/schur_complement.py)
* [Test Linear Algebra](linear_algebra/src/test_linear_algebra.py)
* [Transformations 2D](linear_algebra/src/transformations_2d.py)
## Linear Programming
* [Simplex](linear_programming/simplex.py)
## Machine Learning
* [Astar](machine_learning/astar.py)
* [Data Transformations](machine_learning/data_transformations.py)
@ -501,7 +511,7 @@
* Lstm
* [Lstm Prediction](machine_learning/lstm/lstm_prediction.py)
* [Multilayer Perceptron Classifier](machine_learning/multilayer_perceptron_classifier.py)
* [Polymonial Regression](machine_learning/polymonial_regression.py)
* [Polynomial Regression](machine_learning/polynomial_regression.py)
* [Scoring Functions](machine_learning/scoring_functions.py)
* [Self Organizing Map](machine_learning/self_organizing_map.py)
* [Sequential Minimum Optimization](machine_learning/sequential_minimum_optimization.py)
@ -512,7 +522,6 @@
* [Xgboost Regressor](machine_learning/xgboost_regressor.py)
## Maths
* [3N Plus 1](maths/3n_plus_1.py)
* [Abs](maths/abs.py)
* [Add](maths/add.py)
* [Addition Without Arithmetic](maths/addition_without_arithmetic.py)
@ -548,6 +557,7 @@
* [Dodecahedron](maths/dodecahedron.py)
* [Double Factorial Iterative](maths/double_factorial_iterative.py)
* [Double Factorial Recursive](maths/double_factorial_recursive.py)
* [Dual Number Automatic Differentiation](maths/dual_number_automatic_differentiation.py)
* [Entropy](maths/entropy.py)
* [Euclidean Distance](maths/euclidean_distance.py)
* [Euclidean Gcd](maths/euclidean_gcd.py)
@ -575,16 +585,15 @@
* [Hardy Ramanujanalgo](maths/hardy_ramanujanalgo.py)
* [Hexagonal Number](maths/hexagonal_number.py)
* [Integration By Simpson Approx](maths/integration_by_simpson_approx.py)
* [Is Int Palindrome](maths/is_int_palindrome.py)
* [Is Ip V4 Address Valid](maths/is_ip_v4_address_valid.py)
* [Is Square Free](maths/is_square_free.py)
* [Jaccard Similarity](maths/jaccard_similarity.py)
* [Juggler Sequence](maths/juggler_sequence.py)
* [Kadanes](maths/kadanes.py)
* [Karatsuba](maths/karatsuba.py)
* [Krishnamurthy Number](maths/krishnamurthy_number.py)
* [Kth Lexicographic Permutation](maths/kth_lexicographic_permutation.py)
* [Largest Of Very Large Numbers](maths/largest_of_very_large_numbers.py)
* [Largest Subarray Sum](maths/largest_subarray_sum.py)
* [Least Common Multiple](maths/least_common_multiple.py)
* [Line Length](maths/line_length.py)
* [Liouville Lambda](maths/liouville_lambda.py)
@ -604,6 +613,7 @@
* [Newton Raphson](maths/newton_raphson.py)
* [Number Of Digits](maths/number_of_digits.py)
* [Numerical Integration](maths/numerical_integration.py)
* [Odd Sieve](maths/odd_sieve.py)
* [Perfect Cube](maths/perfect_cube.py)
* [Perfect Number](maths/perfect_number.py)
* [Perfect Square](maths/perfect_square.py)
@ -630,6 +640,7 @@
* [Radians](maths/radians.py)
* [Radix2 Fft](maths/radix2_fft.py)
* [Relu](maths/relu.py)
* [Remove Digit](maths/remove_digit.py)
* [Runge Kutta](maths/runge_kutta.py)
* [Segmented Sieve](maths/segmented_sieve.py)
* Series
@ -645,6 +656,7 @@
* [Sigmoid Linear Unit](maths/sigmoid_linear_unit.py)
* [Signum](maths/signum.py)
* [Simpson Rule](maths/simpson_rule.py)
* [Simultaneous Linear Equation Solver](maths/simultaneous_linear_equation_solver.py)
* [Sin](maths/sin.py)
* [Sock Merchant](maths/sock_merchant.py)
* [Softmax](maths/softmax.py)
@ -655,6 +667,7 @@
* [Sum Of Harmonic Series](maths/sum_of_harmonic_series.py)
* [Sumset](maths/sumset.py)
* [Sylvester Sequence](maths/sylvester_sequence.py)
* [Tanh](maths/tanh.py)
* [Test Prime Check](maths/test_prime_check.py)
* [Trapezoidal Rule](maths/trapezoidal_rule.py)
* [Triplet Sum](maths/triplet_sum.py)
@ -669,6 +682,7 @@
## Matrix
* [Binary Search Matrix](matrix/binary_search_matrix.py)
* [Count Islands In Matrix](matrix/count_islands_in_matrix.py)
* [Count Negative Numbers In Sorted Matrix](matrix/count_negative_numbers_in_sorted_matrix.py)
* [Count Paths](matrix/count_paths.py)
* [Cramers Rule 2X2](matrix/cramers_rule_2x2.py)
* [Inverse Of Matrix](matrix/inverse_of_matrix.py)
@ -691,6 +705,8 @@
## Neural Network
* [2 Hidden Layers Neural Network](neural_network/2_hidden_layers_neural_network.py)
* Activation Functions
* [Exponential Linear Unit](neural_network/activation_functions/exponential_linear_unit.py)
* [Back Propagation Neural Network](neural_network/back_propagation_neural_network.py)
* [Convolution Neural Network](neural_network/convolution_neural_network.py)
* [Input Data](neural_network/input_data.py)
@ -707,13 +723,16 @@
* [Gauss Easter](other/gauss_easter.py)
* [Graham Scan](other/graham_scan.py)
* [Greedy](other/greedy.py)
* [Guess The Number Search](other/guess_the_number_search.py)
* [H Index](other/h_index.py)
* [Least Recently Used](other/least_recently_used.py)
* [Lfu Cache](other/lfu_cache.py)
* [Linear Congruential Generator](other/linear_congruential_generator.py)
* [Lru Cache](other/lru_cache.py)
* [Magicdiamondpattern](other/magicdiamondpattern.py)
* [Maximum Subarray](other/maximum_subarray.py)
* [Maximum Subsequence](other/maximum_subsequence.py)
* [Nested Brackets](other/nested_brackets.py)
* [Number Container System](other/number_container_system.py)
* [Password](other/password.py)
* [Quine](other/quine.py)
* [Scoring Algorithm](other/scoring_algorithm.py)
@ -721,7 +740,9 @@
* [Tower Of Hanoi](other/tower_of_hanoi.py)
## Physics
* [Altitude Pressure](physics/altitude_pressure.py)
* [Archimedes Principle](physics/archimedes_principle.py)
* [Basic Orbital Capture](physics/basic_orbital_capture.py)
* [Casimir Effect](physics/casimir_effect.py)
* [Centripetal Force](physics/centripetal_force.py)
* [Grahams Law](physics/grahams_law.py)
@ -737,6 +758,7 @@
* [Potential Energy](physics/potential_energy.py)
* [Rms Speed Of Molecule](physics/rms_speed_of_molecule.py)
* [Shear Stress](physics/shear_stress.py)
* [Speed Of Sound](physics/speed_of_sound.py)
## Project Euler
* Problem 001
@ -1042,7 +1064,6 @@
* [Q Fourier Transform](quantum/q_fourier_transform.py)
* [Q Full Adder](quantum/q_full_adder.py)
* [Quantum Entanglement](quantum/quantum_entanglement.py)
* [Quantum Random](quantum/quantum_random.py)
* [Quantum Teleportation](quantum/quantum_teleportation.py)
* [Ripple Adder Classic](quantum/ripple_adder_classic.py)
* [Single Qubit Measure](quantum/single_qubit_measure.py)
@ -1076,6 +1097,7 @@
## Sorts
* [Bead Sort](sorts/bead_sort.py)
* [Binary Insertion Sort](sorts/binary_insertion_sort.py)
* [Bitonic Sort](sorts/bitonic_sort.py)
* [Bogo Sort](sorts/bogo_sort.py)
* [Bubble Sort](sorts/bubble_sort.py)
@ -1144,7 +1166,6 @@
* [Indian Phone Validator](strings/indian_phone_validator.py)
* [Is Contains Unique Chars](strings/is_contains_unique_chars.py)
* [Is Isogram](strings/is_isogram.py)
* [Is Palindrome](strings/is_palindrome.py)
* [Is Pangram](strings/is_pangram.py)
* [Is Spain National Id](strings/is_spain_national_id.py)
* [Is Srilankan Phone Number](strings/is_srilankan_phone_number.py)
@ -1166,7 +1187,9 @@
* [Reverse Words](strings/reverse_words.py)
* [Snake Case To Camel Pascal Case](strings/snake_case_to_camel_pascal_case.py)
* [Split](strings/split.py)
* [String Switch Case](strings/string_switch_case.py)
* [Text Justification](strings/text_justification.py)
* [Top K Frequent Words](strings/top_k_frequent_words.py)
* [Upper](strings/upper.py)
* [Wave](strings/wave.py)
* [Wildcard Pattern Matching](strings/wildcard_pattern_matching.py)
@ -1186,7 +1209,6 @@
* [Daily Horoscope](web_programming/daily_horoscope.py)
* [Download Images From Google Query](web_programming/download_images_from_google_query.py)
* [Emails From Url](web_programming/emails_from_url.py)
* [Fetch Anime And Play](web_programming/fetch_anime_and_play.py)
* [Fetch Bbc News](web_programming/fetch_bbc_news.py)
* [Fetch Github Info](web_programming/fetch_github_info.py)
* [Fetch Jobs](web_programming/fetch_jobs.py)

View File

@ -13,7 +13,7 @@
<img src="https://img.shields.io/static/v1.svg?label=Contributions&message=Welcome&color=0059b3&style=flat-square" height="20" alt="Contributions Welcome">
</a>
<img src="https://img.shields.io/github/repo-size/TheAlgorithms/Python.svg?label=Repo%20size&style=flat-square" height="20">
<a href="https://discord.gg/c7MnfGFGa6">
<a href="https://the-algorithms.com/discord">
<img src="https://img.shields.io/discord/808045925556682782.svg?logo=discord&colorB=7289DA&style=flat-square" height="20" alt="Discord chat">
</a>
<a href="https://gitter.im/TheAlgorithms/community">
@ -42,7 +42,7 @@ Read through our [Contribution Guidelines](CONTRIBUTING.md) before you contribut
## Community Channels
We are on [Discord](https://discord.gg/c7MnfGFGa6) and [Gitter](https://gitter.im/TheAlgorithms/community)! Community channels are a great way for you to ask questions and get help. Please join us!
We are on [Discord](https://the-algorithms.com/discord) and [Gitter](https://gitter.im/TheAlgorithms/community)! Community channels are a great way for you to ask questions and get help. Please join us!
## List of Algorithms

View File

@ -49,7 +49,9 @@ def jacobi_iteration_method(
>>> constant = np.array([[2], [-6]])
>>> init_val = [0.5, -0.5, -0.5]
>>> iterations = 3
>>> jacobi_iteration_method(coefficient, constant, init_val, iterations)
>>> jacobi_iteration_method(
... coefficient, constant, init_val, iterations
... ) # doctest: +NORMALIZE_WHITESPACE
Traceback (most recent call last):
...
ValueError: Coefficient and constant matrices dimensions must be nxn and nx1 but
@ -59,7 +61,9 @@ def jacobi_iteration_method(
>>> constant = np.array([[2], [-6], [-4]])
>>> init_val = [0.5, -0.5]
>>> iterations = 3
>>> jacobi_iteration_method(coefficient, constant, init_val, iterations)
>>> jacobi_iteration_method(
... coefficient, constant, init_val, iterations
... ) # doctest: +NORMALIZE_WHITESPACE
Traceback (most recent call last):
...
ValueError: Number of initial values must be equal to number of rows in coefficient
@ -79,24 +83,26 @@ def jacobi_iteration_method(
rows2, cols2 = constant_matrix.shape
if rows1 != cols1:
raise ValueError(
f"Coefficient matrix dimensions must be nxn but received {rows1}x{cols1}"
)
msg = f"Coefficient matrix dimensions must be nxn but received {rows1}x{cols1}"
raise ValueError(msg)
if cols2 != 1:
raise ValueError(f"Constant matrix must be nx1 but received {rows2}x{cols2}")
msg = f"Constant matrix must be nx1 but received {rows2}x{cols2}"
raise ValueError(msg)
if rows1 != rows2:
raise ValueError(
f"""Coefficient and constant matrices dimensions must be nxn and nx1 but
received {rows1}x{cols1} and {rows2}x{cols2}"""
msg = (
"Coefficient and constant matrices dimensions must be nxn and nx1 but "
f"received {rows1}x{cols1} and {rows2}x{cols2}"
)
raise ValueError(msg)
if len(init_val) != rows1:
raise ValueError(
f"""Number of initial values must be equal to number of rows in coefficient
matrix but received {len(init_val)} and {rows1}"""
msg = (
"Number of initial values must be equal to number of rows in coefficient "
f"matrix but received {len(init_val)} and {rows1}"
)
raise ValueError(msg)
if iterations <= 0:
raise ValueError("Iterations must be at least 1")

View File

@ -80,10 +80,11 @@ def lower_upper_decomposition(table: np.ndarray) -> tuple[np.ndarray, np.ndarray
# Ensure that table is a square array
rows, columns = np.shape(table)
if rows != columns:
raise ValueError(
f"'table' has to be of square shaped array but got a "
msg = (
"'table' has to be of square shaped array but got a "
f"{rows}x{columns} array:\n{table}"
)
raise ValueError(msg)
lower = np.zeros((rows, columns))
upper = np.zeros((rows, columns))

View File

@ -25,9 +25,11 @@ def newton_raphson(
"""
x = a
while True:
x = Decimal(x) - (Decimal(eval(func)) / Decimal(eval(str(diff(func)))))
x = Decimal(x) - (
Decimal(eval(func)) / Decimal(eval(str(diff(func)))) # noqa: S307
)
# This number dictates the accuracy of the answer
if abs(eval(func)) < precision:
if abs(eval(func)) < precision: # noqa: S307
return float(x)

View File

@ -50,16 +50,18 @@ class IIRFilter:
a_coeffs = [1.0, *a_coeffs]
if len(a_coeffs) != self.order + 1:
raise ValueError(
f"Expected a_coeffs to have {self.order + 1} elements for {self.order}"
f"-order filter, got {len(a_coeffs)}"
msg = (
f"Expected a_coeffs to have {self.order + 1} elements "
f"for {self.order}-order filter, got {len(a_coeffs)}"
)
raise ValueError(msg)
if len(b_coeffs) != self.order + 1:
raise ValueError(
f"Expected b_coeffs to have {self.order + 1} elements for {self.order}"
f"-order filter, got {len(a_coeffs)}"
msg = (
f"Expected b_coeffs to have {self.order + 1} elements "
f"for {self.order}-order filter, got {len(a_coeffs)}"
)
raise ValueError(msg)
self.a_coeffs = a_coeffs
self.b_coeffs = b_coeffs

View File

@ -91,7 +91,8 @@ def open_knight_tour(n: int) -> list[list[int]]:
return board
board[i][j] = 0
raise ValueError(f"Open Kight Tour cannot be performed on a board of size {n}")
msg = f"Open Kight Tour cannot be performed on a board of size {n}"
raise ValueError(msg)
if __name__ == "__main__":

93
backtracking/power_sum.py Normal file
View File

@ -0,0 +1,93 @@
"""
Problem source: https://www.hackerrank.com/challenges/the-power-sum/problem
Find the number of ways that a given integer X, can be expressed as the sum
of the Nth powers of unique, natural numbers. For example, if X=13 and N=2.
We have to find all combinations of unique squares adding up to 13.
The only solution is 2^2+3^2. Constraints: 1<=X<=1000, 2<=N<=10.
"""
from math import pow
def backtrack(
needed_sum: int,
power: int,
current_number: int,
current_sum: int,
solutions_count: int,
) -> tuple[int, int]:
"""
>>> backtrack(13, 2, 1, 0, 0)
(0, 1)
>>> backtrack(100, 2, 1, 0, 0)
(0, 3)
>>> backtrack(100, 3, 1, 0, 0)
(0, 1)
>>> backtrack(800, 2, 1, 0, 0)
(0, 561)
>>> backtrack(1000, 10, 1, 0, 0)
(0, 0)
>>> backtrack(400, 2, 1, 0, 0)
(0, 55)
>>> backtrack(50, 1, 1, 0, 0)
(0, 3658)
"""
if current_sum == needed_sum:
# If the sum of the powers is equal to needed_sum, then we have a solution.
solutions_count += 1
return current_sum, solutions_count
i_to_n = int(pow(current_number, power))
if current_sum + i_to_n <= needed_sum:
# If the sum of the powers is less than needed_sum, then continue adding powers.
current_sum += i_to_n
current_sum, solutions_count = backtrack(
needed_sum, power, current_number + 1, current_sum, solutions_count
)
current_sum -= i_to_n
if i_to_n < needed_sum:
# If the power of i is less than needed_sum, then try with the next power.
current_sum, solutions_count = backtrack(
needed_sum, power, current_number + 1, current_sum, solutions_count
)
return current_sum, solutions_count
def solve(needed_sum: int, power: int) -> int:
"""
>>> solve(13, 2)
1
>>> solve(100, 2)
3
>>> solve(100, 3)
1
>>> solve(800, 2)
561
>>> solve(1000, 10)
0
>>> solve(400, 2)
55
>>> solve(50, 1)
Traceback (most recent call last):
...
ValueError: Invalid input
needed_sum must be between 1 and 1000, power between 2 and 10.
>>> solve(-10, 5)
Traceback (most recent call last):
...
ValueError: Invalid input
needed_sum must be between 1 and 1000, power between 2 and 10.
"""
if not (1 <= needed_sum <= 1000 and 2 <= power <= 10):
raise ValueError(
"Invalid input\n"
"needed_sum must be between 1 and 1000, power between 2 and 10."
)
return backtrack(needed_sum, power, 1, 0, 0)[1] # Return the solutions_count
if __name__ == "__main__":
import doctest
doctest.testmod()

View File

@ -14,10 +14,11 @@ def get_reverse_bit_string(number: int) -> str:
TypeError: operation can not be conducted on a object of type str
"""
if not isinstance(number, int):
raise TypeError(
msg = (
"operation can not be conducted on a object of type "
f"{type(number).__name__}"
)
raise TypeError(msg)
bit_string = ""
for _ in range(0, 32):
bit_string += str(number % 2)

View File

@ -43,6 +43,8 @@ def test_and_gate() -> None:
if __name__ == "__main__":
test_and_gate()
print(and_gate(1, 0))
print(and_gate(0, 0))
print(and_gate(0, 1))
print(and_gate(1, 1))

View File

@ -10,7 +10,7 @@ Python:
- 3.5
Usage:
- $python3 game_o_life <canvas_size:int>
- $python3 game_of_life <canvas_size:int>
Game-Of-Life Rules:
@ -34,7 +34,7 @@ import numpy as np
from matplotlib import pyplot as plt
from matplotlib.colors import ListedColormap
usage_doc = "Usage of script: script_nama <size_of_canvas:int>"
usage_doc = "Usage of script: script_name <size_of_canvas:int>"
choice = [0] * 100 + [1] * 10
random.shuffle(choice)
@ -52,7 +52,8 @@ def seed(canvas: list[list[bool]]) -> None:
def run(canvas: list[list[bool]]) -> list[list[bool]]:
"""This function runs the rules of game through all points, and changes their
"""
This function runs the rules of game through all points, and changes their
status accordingly.(in the same canvas)
@Args:
--
@ -60,7 +61,7 @@ def run(canvas: list[list[bool]]) -> list[list[bool]]:
@returns:
--
None
canvas of population after one step
"""
current_canvas = np.array(canvas)
next_gen_canvas = np.array(create_canvas(current_canvas.shape[0]))
@ -70,10 +71,7 @@ def run(canvas: list[list[bool]]) -> list[list[bool]]:
pt, current_canvas[r - 1 : r + 2, c - 1 : c + 2]
)
current_canvas = next_gen_canvas
del next_gen_canvas # cleaning memory as we move on.
return_canvas: list[list[bool]] = current_canvas.tolist()
return return_canvas
return next_gen_canvas.tolist()
def __judge_point(pt: bool, neighbours: list[list[bool]]) -> bool:
@ -98,7 +96,7 @@ def __judge_point(pt: bool, neighbours: list[list[bool]]) -> bool:
if pt:
if alive < 2:
state = False
elif alive == 2 or alive == 3:
elif alive in {2, 3}:
state = True
elif alive > 3:
state = False

View File

@ -34,9 +34,8 @@ def base64_encode(data: bytes) -> bytes:
"""
# Make sure the supplied data is a bytes-like object
if not isinstance(data, bytes):
raise TypeError(
f"a bytes-like object is required, not '{data.__class__.__name__}'"
)
msg = f"a bytes-like object is required, not '{data.__class__.__name__}'"
raise TypeError(msg)
binary_stream = "".join(bin(byte)[2:].zfill(8) for byte in data)
@ -88,10 +87,11 @@ def base64_decode(encoded_data: str) -> bytes:
"""
# Make sure encoded_data is either a string or a bytes-like object
if not isinstance(encoded_data, bytes) and not isinstance(encoded_data, str):
raise TypeError(
"argument should be a bytes-like object or ASCII string, not "
f"'{encoded_data.__class__.__name__}'"
msg = (
"argument should be a bytes-like object or ASCII string, "
f"not '{encoded_data.__class__.__name__}'"
)
raise TypeError(msg)
# In case encoded_data is a bytes-like object, make sure it contains only
# ASCII characters so we convert it to a string object

View File

@ -5,7 +5,7 @@ Author: Mohit Radadiya
from string import ascii_uppercase
dict1 = {char: i for i, char in enumerate(ascii_uppercase)}
dict2 = {i: char for i, char in enumerate(ascii_uppercase)}
dict2 = dict(enumerate(ascii_uppercase))
# This function generates the key in

View File

@ -6,7 +6,8 @@ def gcd(a: int, b: int) -> int:
def find_mod_inverse(a: int, m: int) -> int:
if gcd(a, m) != 1:
raise ValueError(f"mod inverse of {a!r} and {m!r} does not exist")
msg = f"mod inverse of {a!r} and {m!r} does not exist"
raise ValueError(msg)
u1, u2, u3 = 1, 0, a
v1, v2, v3 = 0, 1, m
while v3 != 0:

View File

@ -10,13 +10,13 @@ primes = {
5: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF",
"29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
"EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
"E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
"EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
"C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
"83655D23DCA3AD961C62F356208552BB9ED529077096966D"
"670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
@ -25,16 +25,16 @@ primes = {
14: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
+ "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
+ "DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
+ "15728E5A8AACAA68FFFFFFFFFFFFFFFF",
"29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
"EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
"E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
"EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
"C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
"83655D23DCA3AD961C62F356208552BB9ED529077096966D"
"670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
"E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
"DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
"15728E5A8AACAA68FFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
@ -43,21 +43,21 @@ primes = {
15: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
+ "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
+ "DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
+ "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"
+ "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"
+ "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"
+ "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
+ "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"
+ "43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF",
"29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
"EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
"E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
"EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
"C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
"83655D23DCA3AD961C62F356208552BB9ED529077096966D"
"670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
"E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
"DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
"15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"
"ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"
"ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"
"F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
"BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"
"43DB5BFCE0FD108E4B82D120A93AD2CAFFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
@ -66,27 +66,27 @@ primes = {
16: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
+ "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
+ "DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
+ "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"
+ "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"
+ "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"
+ "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
+ "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"
+ "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7"
+ "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA"
+ "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6"
+ "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED"
+ "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9"
+ "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199"
+ "FFFFFFFFFFFFFFFF",
"29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
"EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
"E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
"EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
"C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
"83655D23DCA3AD961C62F356208552BB9ED529077096966D"
"670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
"E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
"DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
"15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"
"ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"
"ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"
"F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
"BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"
"43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7"
"88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA"
"2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6"
"287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED"
"1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9"
"93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934063199"
"FFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
@ -95,33 +95,33 @@ primes = {
17: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E08"
+ "8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B"
+ "302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9"
+ "A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6"
+ "49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8"
+ "FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C"
+ "180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718"
+ "3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D"
+ "04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D"
+ "B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226"
+ "1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
+ "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC"
+ "E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26"
+ "99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB"
+ "04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2"
+ "233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127"
+ "D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492"
+ "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406"
+ "AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918"
+ "DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151"
+ "2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03"
+ "F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F"
+ "BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA"
+ "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B"
+ "B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632"
+ "387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E"
+ "6DCC4024FFFFFFFFFFFFFFFF",
"8A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B"
"302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9"
"A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE6"
"49286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8"
"FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D"
"670C354E4ABC9804F1746C08CA18217C32905E462E36CE3BE39E772C"
"180E86039B2783A2EC07A28FB5C55DF06F4C52C9DE2BCBF695581718"
"3995497CEA956AE515D2261898FA051015728E5A8AAAC42DAD33170D"
"04507A33A85521ABDF1CBA64ECFB850458DBEF0A8AEA71575D060C7D"
"B3970F85A6E1E4C7ABF5AE8CDB0933D71E8C94E04A25619DCEE3D226"
"1AD2EE6BF12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
"BBE117577A615D6C770988C0BAD946E208E24FA074E5AB3143DB5BFC"
"E0FD108E4B82D120A92108011A723C12A787E6D788719A10BDBA5B26"
"99C327186AF4E23C1A946834B6150BDA2583E9CA2AD44CE8DBBBC2DB"
"04DE8EF92E8EFC141FBECAA6287C59474E6BC05D99B2964FA090C3A2"
"233BA186515BE7ED1F612970CEE2D7AFB81BDD762170481CD0069127"
"D5B05AA993B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492"
"36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BDF8FF9406"
"AD9E530EE5DB382F413001AEB06A53ED9027D831179727B0865A8918"
"DA3EDBEBCF9B14ED44CE6CBACED4BB1BDB7F1447E6CC254B33205151"
"2BD7AF426FB8F401378CD2BF5983CA01C64B92ECF032EA15D1721D03"
"F482D7CE6E74FEF6D55E702F46980C82B5A84031900B1C9E59E7C97F"
"BEC7E8F323A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA"
"CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE32806A1D58B"
"B7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55CDA56C9EC2EF29632"
"387FE8D76E3C0468043E8F663F4860EE12BF2D5B0B7474D6E694F91E"
"6DCC4024FFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,
@ -130,48 +130,48 @@ primes = {
18: {
"prime": int(
"FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD1"
+ "29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
+ "EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
+ "E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
+ "EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
+ "C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
+ "83655D23DCA3AD961C62F356208552BB9ED529077096966D"
+ "670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
+ "E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
+ "DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
+ "15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"
+ "ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"
+ "ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"
+ "F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
+ "BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"
+ "43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7"
+ "88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA"
+ "2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6"
+ "287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED"
+ "1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9"
+ "93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492"
+ "36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD"
+ "F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831"
+ "179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B"
+ "DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF"
+ "5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6"
+ "D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3"
+ "23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA"
+ "CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328"
+ "06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C"
+ "DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE"
+ "12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4"
+ "38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300"
+ "741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568"
+ "3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9"
+ "22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B"
+ "4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A"
+ "062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36"
+ "4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1"
+ "B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92"
+ "4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47"
+ "9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71"
+ "60C980DD98EDD3DFFFFFFFFFFFFFFFFF",
"29024E088A67CC74020BBEA63B139B22514A08798E3404DD"
"EF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245"
"E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED"
"EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3D"
"C2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F"
"83655D23DCA3AD961C62F356208552BB9ED529077096966D"
"670C354E4ABC9804F1746C08CA18217C32905E462E36CE3B"
"E39E772C180E86039B2783A2EC07A28FB5C55DF06F4C52C9"
"DE2BCBF6955817183995497CEA956AE515D2261898FA0510"
"15728E5A8AAAC42DAD33170D04507A33A85521ABDF1CBA64"
"ECFB850458DBEF0A8AEA71575D060C7DB3970F85A6E1E4C7"
"ABF5AE8CDB0933D71E8C94E04A25619DCEE3D2261AD2EE6B"
"F12FFA06D98A0864D87602733EC86A64521F2B18177B200C"
"BBE117577A615D6C770988C0BAD946E208E24FA074E5AB31"
"43DB5BFCE0FD108E4B82D120A92108011A723C12A787E6D7"
"88719A10BDBA5B2699C327186AF4E23C1A946834B6150BDA"
"2583E9CA2AD44CE8DBBBC2DB04DE8EF92E8EFC141FBECAA6"
"287C59474E6BC05D99B2964FA090C3A2233BA186515BE7ED"
"1F612970CEE2D7AFB81BDD762170481CD0069127D5B05AA9"
"93B4EA988D8FDDC186FFB7DC90A6C08F4DF435C934028492"
"36C3FAB4D27C7026C1D4DCB2602646DEC9751E763DBA37BD"
"F8FF9406AD9E530EE5DB382F413001AEB06A53ED9027D831"
"179727B0865A8918DA3EDBEBCF9B14ED44CE6CBACED4BB1B"
"DB7F1447E6CC254B332051512BD7AF426FB8F401378CD2BF"
"5983CA01C64B92ECF032EA15D1721D03F482D7CE6E74FEF6"
"D55E702F46980C82B5A84031900B1C9E59E7C97FBEC7E8F3"
"23A97A7E36CC88BE0F1D45B7FF585AC54BD407B22B4154AA"
"CC8F6D7EBF48E1D814CC5ED20F8037E0A79715EEF29BE328"
"06A1D58BB7C5DA76F550AA3D8A1FBFF0EB19CCB1A313D55C"
"DA56C9EC2EF29632387FE8D76E3C0468043E8F663F4860EE"
"12BF2D5B0B7474D6E694F91E6DBE115974A3926F12FEE5E4"
"38777CB6A932DF8CD8BEC4D073B931BA3BC832B68D9DD300"
"741FA7BF8AFC47ED2576F6936BA424663AAB639C5AE4F568"
"3423B4742BF1C978238F16CBE39D652DE3FDB8BEFC848AD9"
"22222E04A4037C0713EB57A81A23F0C73473FC646CEA306B"
"4BCBC8862F8385DDFA9D4B7FA2C087E879683303ED5BDD3A"
"062B3CF5B3A278A66D2A13F83F44F82DDF310EE074AB6A36"
"4597E899A0255DC164F31CC50846851DF9AB48195DED7EA1"
"B1D510BD7EE74D73FAF36BC31ECFA268359046F4EB879F92"
"4009438B481C6CD7889A002ED5EE382BC9190DA6FC026E47"
"9558E4475677E9AA9E3050E2765694DFC81F56E880B96E71"
"60C980DD98EDD3DFFFFFFFFFFFFFFFFF",
base=16,
),
"generator": 2,

View File

@ -87,22 +87,20 @@ def _validator(
# Checks if there are 3 unique rotors
if (unique_rotsel := len(set(rotsel))) < 3:
raise Exception(f"Please use 3 unique rotors (not {unique_rotsel})")
msg = f"Please use 3 unique rotors (not {unique_rotsel})"
raise Exception(msg)
# Checks if rotor positions are valid
rotorpos1, rotorpos2, rotorpos3 = rotpos
if not 0 < rotorpos1 <= len(abc):
raise ValueError(
"First rotor position is not within range of 1..26 (" f"{rotorpos1}"
)
msg = f"First rotor position is not within range of 1..26 ({rotorpos1}"
raise ValueError(msg)
if not 0 < rotorpos2 <= len(abc):
raise ValueError(
"Second rotor position is not within range of 1..26 (" f"{rotorpos2})"
)
msg = f"Second rotor position is not within range of 1..26 ({rotorpos2})"
raise ValueError(msg)
if not 0 < rotorpos3 <= len(abc):
raise ValueError(
"Third rotor position is not within range of 1..26 (" f"{rotorpos3})"
)
msg = f"Third rotor position is not within range of 1..26 ({rotorpos3})"
raise ValueError(msg)
# Validates string and returns dict
pbdict = _plugboard(pb)
@ -130,9 +128,11 @@ def _plugboard(pbstring: str) -> dict[str, str]:
# a) is type string
# b) has even length (so pairs can be made)
if not isinstance(pbstring, str):
raise TypeError(f"Plugboard setting isn't type string ({type(pbstring)})")
msg = f"Plugboard setting isn't type string ({type(pbstring)})"
raise TypeError(msg)
elif len(pbstring) % 2 != 0:
raise Exception(f"Odd number of symbols ({len(pbstring)})")
msg = f"Odd number of symbols ({len(pbstring)})"
raise Exception(msg)
elif pbstring == "":
return {}
@ -142,9 +142,11 @@ def _plugboard(pbstring: str) -> dict[str, str]:
tmppbl = set()
for i in pbstring:
if i not in abc:
raise Exception(f"'{i}' not in list of symbols")
msg = f"'{i}' not in list of symbols"
raise Exception(msg)
elif i in tmppbl:
raise Exception(f"Duplicate symbol ({i})")
msg = f"Duplicate symbol ({i})"
raise Exception(msg)
else:
tmppbl.add(i)
del tmppbl

View File

@ -104,10 +104,11 @@ class HillCipher:
req_l = len(self.key_string)
if greatest_common_divisor(det, len(self.key_string)) != 1:
raise ValueError(
f"determinant modular {req_l} of encryption key({det}) is not co prime "
f"w.r.t {req_l}.\nTry another key."
msg = (
f"determinant modular {req_l} of encryption key({det}) "
f"is not co prime w.r.t {req_l}.\nTry another key."
)
raise ValueError(msg)
def process_text(self, text: str) -> str:
"""

View File

@ -1,7 +1,11 @@
def mixed_keyword(key: str = "college", pt: str = "UNIVERSITY") -> str:
"""
from string import ascii_uppercase
For key:hello
def mixed_keyword(
keyword: str, plaintext: str, verbose: bool = False, alphabet: str = ascii_uppercase
) -> str:
"""
For keyword: hello
H E L O
A B C D
@ -12,57 +16,60 @@ def mixed_keyword(key: str = "college", pt: str = "UNIVERSITY") -> str:
Y Z
and map vertically
>>> mixed_keyword("college", "UNIVERSITY") # doctest: +NORMALIZE_WHITESPACE
>>> mixed_keyword("college", "UNIVERSITY", True) # doctest: +NORMALIZE_WHITESPACE
{'A': 'C', 'B': 'A', 'C': 'I', 'D': 'P', 'E': 'U', 'F': 'Z', 'G': 'O', 'H': 'B',
'I': 'J', 'J': 'Q', 'K': 'V', 'L': 'L', 'M': 'D', 'N': 'K', 'O': 'R', 'P': 'W',
'Q': 'E', 'R': 'F', 'S': 'M', 'T': 'S', 'U': 'X', 'V': 'G', 'W': 'H', 'X': 'N',
'Y': 'T', 'Z': 'Y'}
'XKJGUFMJST'
>>> mixed_keyword("college", "UNIVERSITY", False) # doctest: +NORMALIZE_WHITESPACE
'XKJGUFMJST'
"""
key = key.upper()
pt = pt.upper()
temp = []
for i in key:
if i not in temp:
temp.append(i)
len_temp = len(temp)
# print(temp)
alpha = []
modalpha = []
for j in range(65, 91):
t = chr(j)
alpha.append(t)
if t not in temp:
temp.append(t)
# print(temp)
r = int(26 / 4)
# print(r)
k = 0
for _ in range(r):
s = []
for _ in range(len_temp):
s.append(temp[k])
if k >= 25:
keyword = keyword.upper()
plaintext = plaintext.upper()
alphabet_set = set(alphabet)
# create a list of unique characters in the keyword - their order matters
# it determines how we will map plaintext characters to the ciphertext
unique_chars = []
for char in keyword:
if char in alphabet_set and char not in unique_chars:
unique_chars.append(char)
# the number of those unique characters will determine the number of rows
num_unique_chars_in_keyword = len(unique_chars)
# create a shifted version of the alphabet
shifted_alphabet = unique_chars + [
char for char in alphabet if char not in unique_chars
]
# create a modified alphabet by splitting the shifted alphabet into rows
modified_alphabet = [
shifted_alphabet[k : k + num_unique_chars_in_keyword]
for k in range(0, 26, num_unique_chars_in_keyword)
]
# map the alphabet characters to the modified alphabet characters
# going 'vertically' through the modified alphabet - consider columns first
mapping = {}
letter_index = 0
for column in range(num_unique_chars_in_keyword):
for row in modified_alphabet:
# if current row (the last one) is too short, break out of loop
if len(row) <= column:
break
k += 1
modalpha.append(s)
# print(modalpha)
d = {}
j = 0
k = 0
for j in range(len_temp):
for m in modalpha:
if not len(m) - 1 >= j:
break
d[alpha[k]] = m[j]
if not k < 25:
break
k += 1
print(d)
cypher = ""
for i in pt:
cypher += d[i]
return cypher
# map current letter to letter in modified alphabet
mapping[alphabet[letter_index]] = row[column]
letter_index += 1
if verbose:
print(mapping)
# create the encrypted text by mapping the plaintext to the modified alphabet
return "".join(mapping[char] if char in mapping else char for char in plaintext)
if __name__ == "__main__":
# example use
print(mixed_keyword("college", "UNIVERSITY"))

View File

@ -150,7 +150,7 @@ def reverse_bwt(bwt_string: str, idx_original_string: int) -> str:
raise ValueError("The parameter idx_original_string must not be lower than 0.")
if idx_original_string >= len(bwt_string):
raise ValueError(
"The parameter idx_original_string must be lower than" " len(bwt_string)."
"The parameter idx_original_string must be lower than len(bwt_string)."
)
ordered_rotations = [""] * len(bwt_string)

View File

@ -77,15 +77,17 @@ def length_conversion(value: float, from_type: str, to_type: str) -> float:
to_sanitized = UNIT_SYMBOL.get(to_sanitized, to_sanitized)
if from_sanitized not in METRIC_CONVERSION:
raise ValueError(
msg = (
f"Invalid 'from_type' value: {from_type!r}.\n"
f"Conversion abbreviations are: {', '.join(METRIC_CONVERSION)}"
)
raise ValueError(msg)
if to_sanitized not in METRIC_CONVERSION:
raise ValueError(
msg = (
f"Invalid 'to_type' value: {to_type!r}.\n"
f"Conversion abbreviations are: {', '.join(METRIC_CONVERSION)}"
)
raise ValueError(msg)
from_exponent = METRIC_CONVERSION[from_sanitized]
to_exponent = METRIC_CONVERSION[to_sanitized]
exponent = 1

View File

@ -0,0 +1,114 @@
"""
Conversion of energy units.
Available units: joule, kilojoule, megajoule, gigajoule,\
wattsecond, watthour, kilowatthour, newtonmeter, calorie_nutr,\
kilocalorie_nutr, electronvolt, britishthermalunit_it, footpound
USAGE :
-> Import this file into their respective project.
-> Use the function energy_conversion() for conversion of energy units.
-> Parameters :
-> from_type : From which type you want to convert
-> to_type : To which type you want to convert
-> value : the value which you want to convert
REFERENCES :
-> Wikipedia reference: https://en.wikipedia.org/wiki/Units_of_energy
-> Wikipedia reference: https://en.wikipedia.org/wiki/Joule
-> Wikipedia reference: https://en.wikipedia.org/wiki/Kilowatt-hour
-> Wikipedia reference: https://en.wikipedia.org/wiki/Newton-metre
-> Wikipedia reference: https://en.wikipedia.org/wiki/Calorie
-> Wikipedia reference: https://en.wikipedia.org/wiki/Electronvolt
-> Wikipedia reference: https://en.wikipedia.org/wiki/British_thermal_unit
-> Wikipedia reference: https://en.wikipedia.org/wiki/Foot-pound_(energy)
-> Unit converter reference: https://www.unitconverters.net/energy-converter.html
"""
ENERGY_CONVERSION: dict[str, float] = {
"joule": 1.0,
"kilojoule": 1_000,
"megajoule": 1_000_000,
"gigajoule": 1_000_000_000,
"wattsecond": 1.0,
"watthour": 3_600,
"kilowatthour": 3_600_000,
"newtonmeter": 1.0,
"calorie_nutr": 4_186.8,
"kilocalorie_nutr": 4_186_800.00,
"electronvolt": 1.602_176_634e-19,
"britishthermalunit_it": 1_055.055_85,
"footpound": 1.355_818,
}
def energy_conversion(from_type: str, to_type: str, value: float) -> float:
"""
Conversion of energy units.
>>> energy_conversion("joule", "joule", 1)
1.0
>>> energy_conversion("joule", "kilojoule", 1)
0.001
>>> energy_conversion("joule", "megajoule", 1)
1e-06
>>> energy_conversion("joule", "gigajoule", 1)
1e-09
>>> energy_conversion("joule", "wattsecond", 1)
1.0
>>> energy_conversion("joule", "watthour", 1)
0.0002777777777777778
>>> energy_conversion("joule", "kilowatthour", 1)
2.7777777777777776e-07
>>> energy_conversion("joule", "newtonmeter", 1)
1.0
>>> energy_conversion("joule", "calorie_nutr", 1)
0.00023884589662749592
>>> energy_conversion("joule", "kilocalorie_nutr", 1)
2.388458966274959e-07
>>> energy_conversion("joule", "electronvolt", 1)
6.241509074460763e+18
>>> energy_conversion("joule", "britishthermalunit_it", 1)
0.0009478171226670134
>>> energy_conversion("joule", "footpound", 1)
0.7375621211696556
>>> energy_conversion("joule", "megajoule", 1000)
0.001
>>> energy_conversion("calorie_nutr", "kilocalorie_nutr", 1000)
1.0
>>> energy_conversion("kilowatthour", "joule", 10)
36000000.0
>>> energy_conversion("britishthermalunit_it", "footpound", 1)
778.1692306784539
>>> energy_conversion("watthour", "joule", "a") # doctest: +ELLIPSIS
Traceback (most recent call last):
...
TypeError: unsupported operand type(s) for /: 'str' and 'float'
>>> energy_conversion("wrongunit", "joule", 1) # doctest: +ELLIPSIS
Traceback (most recent call last):
...
ValueError: Incorrect 'from_type' or 'to_type' value: 'wrongunit', 'joule'
Valid values are: joule, ... footpound
>>> energy_conversion("joule", "wrongunit", 1) # doctest: +ELLIPSIS
Traceback (most recent call last):
...
ValueError: Incorrect 'from_type' or 'to_type' value: 'joule', 'wrongunit'
Valid values are: joule, ... footpound
>>> energy_conversion("123", "abc", 1) # doctest: +ELLIPSIS
Traceback (most recent call last):
...
ValueError: Incorrect 'from_type' or 'to_type' value: '123', 'abc'
Valid values are: joule, ... footpound
"""
if to_type not in ENERGY_CONVERSION or from_type not in ENERGY_CONVERSION:
msg = (
f"Incorrect 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n"
f"Valid values are: {', '.join(ENERGY_CONVERSION)}"
)
raise ValueError(msg)
return value * ENERGY_CONVERSION[from_type] / ENERGY_CONVERSION[to_type]
if __name__ == "__main__":
import doctest
doctest.testmod()

View File

@ -104,15 +104,17 @@ def length_conversion(value: float, from_type: str, to_type: str) -> float:
new_to = to_type.lower().rstrip("s")
new_to = TYPE_CONVERSION.get(new_to, new_to)
if new_from not in METRIC_CONVERSION:
raise ValueError(
msg = (
f"Invalid 'from_type' value: {from_type!r}.\n"
f"Conversion abbreviations are: {', '.join(METRIC_CONVERSION)}"
)
raise ValueError(msg)
if new_to not in METRIC_CONVERSION:
raise ValueError(
msg = (
f"Invalid 'to_type' value: {to_type!r}.\n"
f"Conversion abbreviations are: {', '.join(METRIC_CONVERSION)}"
)
raise ValueError(msg)
return value * METRIC_CONVERSION[new_from].from_ * METRIC_CONVERSION[new_to].to

View File

@ -96,7 +96,7 @@ def add_si_prefix(value: float) -> str:
for name_prefix, value_prefix in prefixes.items():
numerical_part = value / (10**value_prefix)
if numerical_part > 1:
return f"{str(numerical_part)} {name_prefix}"
return f"{numerical_part!s} {name_prefix}"
return str(value)
@ -111,7 +111,7 @@ def add_binary_prefix(value: float) -> str:
for prefix in BinaryUnit:
numerical_part = value / (2**prefix.value)
if numerical_part > 1:
return f"{str(numerical_part)} {prefix.name}"
return f"{numerical_part!s} {prefix.name}"
return str(value)

View File

@ -121,8 +121,8 @@ def rgb_to_hsv(red: int, green: int, blue: int) -> list[float]:
float_red = red / 255
float_green = green / 255
float_blue = blue / 255
value = max(max(float_red, float_green), float_blue)
chroma = value - min(min(float_red, float_green), float_blue)
value = max(float_red, float_green, float_blue)
chroma = value - min(float_red, float_green, float_blue)
saturation = 0 if value == 0 else chroma / value
if chroma == 0:

View File

@ -57,10 +57,11 @@ def convert_speed(speed: float, unit_from: str, unit_to: str) -> float:
115.078
"""
if unit_to not in speed_chart or unit_from not in speed_chart_inverse:
raise ValueError(
msg = (
f"Incorrect 'from_type' or 'to_type' value: {unit_from!r}, {unit_to!r}\n"
f"Valid values are: {', '.join(speed_chart_inverse)}"
)
raise ValueError(msg)
return round(speed * speed_chart[unit_from] * speed_chart_inverse[unit_to], 3)

View File

@ -299,10 +299,11 @@ def weight_conversion(from_type: str, to_type: str, value: float) -> float:
1.999999998903455
"""
if to_type not in KILOGRAM_CHART or from_type not in WEIGHT_TYPE_CHART:
raise ValueError(
msg = (
f"Invalid 'from_type' or 'to_type' value: {from_type!r}, {to_type!r}\n"
f"Supported values are: {', '.join(WEIGHT_TYPE_CHART)}"
)
raise ValueError(msg)
return value * KILOGRAM_CHART[to_type] * WEIGHT_TYPE_CHART[from_type]

View File

@ -1,7 +1,6 @@
def permute(nums: list[int]) -> list[list[int]]:
"""
Return all permutations.
>>> from itertools import permutations
>>> numbers= [1,2,3]
>>> all(list(nums) in permute(numbers) for nums in permutations(numbers))
@ -20,7 +19,32 @@ def permute(nums: list[int]) -> list[list[int]]:
return result
def permute2(nums):
"""
Return all permutations of the given list.
>>> permute2([1, 2, 3])
[[1, 2, 3], [1, 3, 2], [2, 1, 3], [2, 3, 1], [3, 2, 1], [3, 1, 2]]
"""
def backtrack(start):
if start == len(nums) - 1:
output.append(nums[:])
else:
for i in range(start, len(nums)):
nums[start], nums[i] = nums[i], nums[start]
backtrack(start + 1)
nums[start], nums[i] = nums[i], nums[start] # backtrack
output = []
backtrack(0)
return output
if __name__ == "__main__":
import doctest
# use res to print the data in permute2 function
res = permute2([1, 2, 3])
print(res)
doctest.testmod()

View File

@ -0,0 +1,98 @@
"""
Calculate the Product Sum from a Special Array.
reference: https://dev.to/sfrasica/algorithms-product-sum-from-an-array-dc6
Python doctests can be run with the following command:
python -m doctest -v product_sum.py
Calculate the product sum of a "special" array which can contain integers or nested
arrays. The product sum is obtained by adding all elements and multiplying by their
respective depths.
For example, in the array [x, y], the product sum is (x + y). In the array [x, [y, z]],
the product sum is x + 2 * (y + z). In the array [x, [y, [z]]],
the product sum is x + 2 * (y + 3z).
Example Input:
[5, 2, [-7, 1], 3, [6, [-13, 8], 4]]
Output: 12
"""
def product_sum(arr: list[int | list], depth: int) -> int:
"""
Recursively calculates the product sum of an array.
The product sum of an array is defined as the sum of its elements multiplied by
their respective depths. If an element is a list, its product sum is calculated
recursively by multiplying the sum of its elements with its depth plus one.
Args:
arr: The array of integers and nested lists.
depth: The current depth level.
Returns:
int: The product sum of the array.
Examples:
>>> product_sum([1, 2, 3], 1)
6
>>> product_sum([-1, 2, [-3, 4]], 2)
8
>>> product_sum([1, 2, 3], -1)
-6
>>> product_sum([1, 2, 3], 0)
0
>>> product_sum([1, 2, 3], 7)
42
>>> product_sum((1, 2, 3), 7)
42
>>> product_sum({1, 2, 3}, 7)
42
>>> product_sum([1, -1], 1)
0
>>> product_sum([1, -2], 1)
-1
>>> product_sum([-3.5, [1, [0.5]]], 1)
1.5
"""
total_sum = 0
for ele in arr:
total_sum += product_sum(ele, depth + 1) if isinstance(ele, list) else ele
return total_sum * depth
def product_sum_array(array: list[int | list]) -> int:
"""
Calculates the product sum of an array.
Args:
array (List[Union[int, List]]): The array of integers and nested lists.
Returns:
int: The product sum of the array.
Examples:
>>> product_sum_array([1, 2, 3])
6
>>> product_sum_array([1, [2, 3]])
11
>>> product_sum_array([1, [2, [3, 4]]])
47
>>> product_sum_array([0])
0
>>> product_sum_array([-3.5, [1, [0.5]]])
1.5
>>> product_sum_array([1, -2])
-1
"""
return product_sum(array, 1)
if __name__ == "__main__":
import doctest
doctest.testmod()

View File

@ -40,7 +40,7 @@ class BinarySearchTree:
else:
node.parent.left = new_children
else:
self.root = None
self.root = new_children
def is_right(self, node: Node) -> bool:
if node.parent and node.parent.right:

View File

@ -77,7 +77,8 @@ class BinarySearchTree:
elif label > node.label:
node.right = self._put(node.right, label, node)
else:
raise Exception(f"Node with label {label} already exists")
msg = f"Node with label {label} already exists"
raise Exception(msg)
return node
@ -100,7 +101,8 @@ class BinarySearchTree:
def _search(self, node: Node | None, label: int) -> Node:
if node is None:
raise Exception(f"Node with label {label} does not exist")
msg = f"Node with label {label} does not exist"
raise Exception(msg)
else:
if label < node.label:
node = self._search(node.left, label)

View File

@ -31,7 +31,8 @@ def binary_tree_mirror(binary_tree: dict, root: int = 1) -> dict:
if not binary_tree:
raise ValueError("binary tree cannot be empty")
if root not in binary_tree:
raise ValueError(f"root {root} is not present in the binary_tree")
msg = f"root {root} is not present in the binary_tree"
raise ValueError(msg)
binary_tree_mirror_dictionary = dict(binary_tree)
binary_tree_mirror_dict(binary_tree_mirror_dictionary, root)
return binary_tree_mirror_dictionary

View File

@ -58,6 +58,19 @@ def inorder(root: Node | None) -> list[int]:
return [*inorder(root.left), root.data, *inorder(root.right)] if root else []
def reverse_inorder(root: Node | None) -> list[int]:
"""
Reverse in-order traversal visits right subtree, root node, left subtree.
>>> reverse_inorder(make_tree())
[3, 1, 5, 2, 4]
"""
return (
[*reverse_inorder(root.right), root.data, *reverse_inorder(root.left)]
if root
else []
)
def height(root: Node | None) -> int:
"""
Recursive function for calculating the height of the binary tree.
@ -161,15 +174,12 @@ def zigzag(root: Node | None) -> Sequence[Node | None] | list[Any]:
def main() -> None: # Main function for testing.
"""
Create binary tree.
"""
# Create binary tree.
root = make_tree()
"""
All Traversals of the binary are as follows:
"""
# All Traversals of the binary are as follows:
print(f"In-order Traversal: {inorder(root)}")
print(f"Reverse In-order Traversal: {reverse_inorder(root)}")
print(f"Pre-order Traversal: {preorder(root)}")
print(f"Post-order Traversal: {postorder(root)}", "\n")

View File

@ -152,7 +152,7 @@ class RedBlackTree:
self.grandparent.color = 1
self.grandparent._insert_repair()
def remove(self, label: int) -> RedBlackTree:
def remove(self, label: int) -> RedBlackTree: # noqa: PLR0912
"""Remove label from this tree."""
if self.label == label:
if self.left and self.right:

View File

@ -7,6 +7,7 @@ class SegmentTree:
self.st = [0] * (
4 * self.N
) # approximate the overall size of segment tree with array N
if self.N:
self.build(1, 0, self.N - 1)
def left(self, idx):

View File

@ -56,7 +56,8 @@ def find_python_set(node: Node) -> set:
for s in sets:
if node.data in s:
return s
raise ValueError(f"{node.data} is not in {sets}")
msg = f"{node.data} is not in {sets}"
raise ValueError(msg)
def test_disjoint_set() -> None:

View File

@ -1,9 +1,28 @@
from __future__ import annotations
from abc import abstractmethod
from collections.abc import Iterable
from typing import Generic, Protocol, TypeVar
class Heap:
class Comparable(Protocol):
@abstractmethod
def __lt__(self: T, other: T) -> bool:
pass
@abstractmethod
def __gt__(self: T, other: T) -> bool:
pass
@abstractmethod
def __eq__(self: T, other: object) -> bool:
pass
T = TypeVar("T", bound=Comparable)
class Heap(Generic[T]):
"""A Max Heap Implementation
>>> unsorted = [103, 9, 1, 7, 11, 15, 25, 201, 209, 107, 5]
@ -27,7 +46,7 @@ class Heap:
"""
def __init__(self) -> None:
self.h: list[float] = []
self.h: list[T] = []
self.heap_size: int = 0
def __repr__(self) -> str:
@ -79,7 +98,7 @@ class Heap:
# fix the subsequent violation recursively if any
self.max_heapify(violation)
def build_max_heap(self, collection: Iterable[float]) -> None:
def build_max_heap(self, collection: Iterable[T]) -> None:
"""build max heap from an unsorted array"""
self.h = list(collection)
self.heap_size = len(self.h)
@ -88,7 +107,7 @@ class Heap:
for i in range(self.heap_size // 2 - 1, -1, -1):
self.max_heapify(i)
def extract_max(self) -> float:
def extract_max(self) -> T:
"""get and remove max from heap"""
if self.heap_size >= 2:
me = self.h[0]
@ -102,7 +121,7 @@ class Heap:
else:
raise Exception("Empty heap")
def insert(self, value: float) -> None:
def insert(self, value: T) -> None:
"""insert a new value into the max heap"""
self.h.append(value)
idx = (self.heap_size - 1) // 2
@ -144,7 +163,7 @@ if __name__ == "__main__":
]:
print(f"unsorted array: {unsorted}")
heap = Heap()
heap: Heap[int] = Heap()
heap.build_max_heap(unsorted)
print(f"after build heap: {heap}")

View File

@ -94,25 +94,25 @@ def test_circular_linked_list() -> None:
try:
circular_linked_list.delete_front()
raise AssertionError() # This should not happen
raise AssertionError # This should not happen
except IndexError:
assert True # This should happen
try:
circular_linked_list.delete_tail()
raise AssertionError() # This should not happen
raise AssertionError # This should not happen
except IndexError:
assert True # This should happen
try:
circular_linked_list.delete_nth(-1)
raise AssertionError()
raise AssertionError
except IndexError:
assert True
try:
circular_linked_list.delete_nth(0)
raise AssertionError()
raise AssertionError
except IndexError:
assert True

View File

@ -198,13 +198,13 @@ def test_doubly_linked_list() -> None:
try:
linked_list.delete_head()
raise AssertionError() # This should not happen.
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
try:
linked_list.delete_tail()
raise AssertionError() # This should not happen.
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.

View File

@ -353,13 +353,13 @@ def test_singly_linked_list() -> None:
try:
linked_list.delete_head()
raise AssertionError() # This should not happen.
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.
try:
linked_list.delete_tail()
raise AssertionError() # This should not happen.
raise AssertionError # This should not happen.
except IndexError:
assert True # This should happen.

View File

@ -32,7 +32,7 @@ class Deque:
the number of nodes
"""
__slots__ = ["_front", "_back", "_len"]
__slots__ = ("_front", "_back", "_len")
@dataclass
class _Node:
@ -54,7 +54,7 @@ class Deque:
the current node of the iteration.
"""
__slots__ = ["_cur"]
__slots__ = ("_cur",)
def __init__(self, cur: Deque._Node | None) -> None:
self._cur = cur

View File

@ -0,0 +1,141 @@
"""Queue represented by a Python list"""
from collections.abc import Iterable
from typing import Generic, TypeVar
_T = TypeVar("_T")
class QueueByList(Generic[_T]):
def __init__(self, iterable: Iterable[_T] | None = None) -> None:
"""
>>> QueueByList()
Queue(())
>>> QueueByList([10, 20, 30])
Queue((10, 20, 30))
>>> QueueByList((i**2 for i in range(1, 4)))
Queue((1, 4, 9))
"""
self.entries: list[_T] = list(iterable or [])
def __len__(self) -> int:
"""
>>> len(QueueByList())
0
>>> from string import ascii_lowercase
>>> len(QueueByList(ascii_lowercase))
26
>>> queue = QueueByList()
>>> for i in range(1, 11):
... queue.put(i)
>>> len(queue)
10
>>> for i in range(2):
... queue.get()
1
2
>>> len(queue)
8
"""
return len(self.entries)
def __repr__(self) -> str:
"""
>>> queue = QueueByList()
>>> queue
Queue(())
>>> str(queue)
'Queue(())'
>>> queue.put(10)
>>> queue
Queue((10,))
>>> queue.put(20)
>>> queue.put(30)
>>> queue
Queue((10, 20, 30))
"""
return f"Queue({tuple(self.entries)})"
def put(self, item: _T) -> None:
"""Put `item` to the Queue
>>> queue = QueueByList()
>>> queue.put(10)
>>> queue.put(20)
>>> len(queue)
2
>>> queue
Queue((10, 20))
"""
self.entries.append(item)
def get(self) -> _T:
"""
Get `item` from the Queue
>>> queue = QueueByList((10, 20, 30))
>>> queue.get()
10
>>> queue.put(40)
>>> queue.get()
20
>>> queue.get()
30
>>> len(queue)
1
>>> queue.get()
40
>>> queue.get()
Traceback (most recent call last):
...
IndexError: Queue is empty
"""
if not self.entries:
raise IndexError("Queue is empty")
return self.entries.pop(0)
def rotate(self, rotation: int) -> None:
"""Rotate the items of the Queue `rotation` times
>>> queue = QueueByList([10, 20, 30, 40])
>>> queue
Queue((10, 20, 30, 40))
>>> queue.rotate(1)
>>> queue
Queue((20, 30, 40, 10))
>>> queue.rotate(2)
>>> queue
Queue((40, 10, 20, 30))
"""
put = self.entries.append
get = self.entries.pop
for _ in range(rotation):
put(get(0))
def get_front(self) -> _T:
"""Get the front item from the Queue
>>> queue = QueueByList((10, 20, 30))
>>> queue.get_front()
10
>>> queue
Queue((10, 20, 30))
>>> queue.get()
10
>>> queue.get_front()
20
"""
return self.entries[0]
if __name__ == "__main__":
from doctest import testmod
testmod()

View File

@ -1,52 +0,0 @@
"""Queue represented by a Python list"""
class Queue:
def __init__(self):
self.entries = []
self.length = 0
self.front = 0
def __str__(self):
printed = "<" + str(self.entries)[1:-1] + ">"
return printed
"""Enqueues {@code item}
@param item
item to enqueue"""
def put(self, item):
self.entries.append(item)
self.length = self.length + 1
"""Dequeues {@code item}
@requirement: |self.length| > 0
@return dequeued
item that was dequeued"""
def get(self):
self.length = self.length - 1
dequeued = self.entries[self.front]
# self.front-=1
# self.entries = self.entries[self.front:]
self.entries = self.entries[1:]
return dequeued
"""Rotates the queue {@code rotation} times
@param rotation
number of times to rotate queue"""
def rotate(self, rotation):
for _ in range(rotation):
self.put(self.get())
"""Enqueues {@code item}
@return item at front of self.entries"""
def get_front(self):
return self.entries[0]
"""Returns the length of this.entries"""
def size(self):
return self.length

View File

@ -92,13 +92,13 @@ def test_stack() -> None:
try:
_ = stack.pop()
raise AssertionError() # This should not happen
raise AssertionError # This should not happen
except StackUnderflowError:
assert True # This should happen
try:
_ = stack.peek()
raise AssertionError() # This should not happen
raise AssertionError # This should not happen
except StackUnderflowError:
assert True # This should happen
@ -118,7 +118,7 @@ def test_stack() -> None:
try:
stack.push(200)
raise AssertionError() # This should not happen
raise AssertionError # This should not happen
except StackOverflowError:
assert True # This should happen

View File

@ -54,10 +54,17 @@ class RadixNode:
word (str): word to insert
>>> RadixNode("myprefix").insert("mystring")
>>> root = RadixNode()
>>> root.insert_many(['myprefix', 'myprefixA', 'myprefixAA'])
>>> root.print_tree()
- myprefix (leaf)
-- A (leaf)
--- A (leaf)
"""
# Case 1: If the word is the prefix of the node
# Solution: We set the current node as leaf
if self.prefix == word:
if self.prefix == word and not self.is_leaf:
self.is_leaf = True
# Case 2: The node has no edges that have a prefix to the word
@ -156,7 +163,7 @@ class RadixNode:
del self.nodes[word[0]]
# We merge the current node with its only child
if len(self.nodes) == 1 and not self.is_leaf:
merging_node = list(self.nodes.values())[0]
merging_node = next(iter(self.nodes.values()))
self.is_leaf = merging_node.is_leaf
self.prefix += merging_node.prefix
self.nodes = merging_node.nodes
@ -165,7 +172,7 @@ class RadixNode:
incoming_node.is_leaf = False
# If there is 1 edge, we merge it with its child
else:
merging_node = list(incoming_node.nodes.values())[0]
merging_node = next(iter(incoming_node.nodes.values()))
incoming_node.is_leaf = merging_node.is_leaf
incoming_node.prefix += merging_node.prefix
incoming_node.nodes = merging_node.nodes

View File

@ -21,7 +21,8 @@ class Burkes:
self.max_threshold = int(self.get_greyscale(255, 255, 255))
if not self.min_threshold < threshold < self.max_threshold:
raise ValueError(f"Factor value should be from 0 to {self.max_threshold}")
msg = f"Factor value should be from 0 to {self.max_threshold}"
raise ValueError(msg)
self.input_img = input_img
self.threshold = threshold
@ -38,9 +39,18 @@ class Burkes:
def get_greyscale(cls, blue: int, green: int, red: int) -> float:
"""
>>> Burkes.get_greyscale(3, 4, 5)
3.753
4.185
>>> Burkes.get_greyscale(0, 0, 0)
0.0
>>> Burkes.get_greyscale(255, 255, 255)
255.0
"""
return 0.114 * blue + 0.587 * green + 0.2126 * red
"""
Formula from https://en.wikipedia.org/wiki/HSL_and_HSV
cf Lightness section, and Fig 13c.
We use the first of four possible.
"""
return 0.114 * blue + 0.587 * green + 0.299 * red
def process(self) -> None:
for y in range(self.height):
@ -48,10 +58,10 @@ class Burkes:
greyscale = int(self.get_greyscale(*self.input_img[y][x]))
if self.threshold > greyscale + self.error_table[y][x]:
self.output_img[y][x] = (0, 0, 0)
current_error = greyscale + self.error_table[x][y]
current_error = greyscale + self.error_table[y][x]
else:
self.output_img[y][x] = (255, 255, 255)
current_error = greyscale + self.error_table[x][y] - 255
current_error = greyscale + self.error_table[y][x] - 255
"""
Burkes error propagation (`*` is current pixel):

View File

@ -96,7 +96,7 @@ def test_nearest_neighbour(
def test_local_binary_pattern():
file_path: str = "digital_image_processing/image_data/lena.jpg"
file_path = "digital_image_processing/image_data/lena.jpg"
# Reading the image and converting it to grayscale.
image = imread(file_path, 0)

View File

@ -174,12 +174,12 @@ def _validate_input(points: list[Point] | list[list[float]]) -> list[Point]:
"""
if not hasattr(points, "__iter__"):
raise ValueError(
f"Expecting an iterable object but got an non-iterable type {points}"
)
msg = f"Expecting an iterable object but got an non-iterable type {points}"
raise ValueError(msg)
if not points:
raise ValueError(f"Expecting a list of points but got {points}")
msg = f"Expecting a list of points but got {points}"
raise ValueError(msg)
return _construct_points(points)
@ -266,7 +266,7 @@ def convex_hull_bf(points: list[Point]) -> list[Point]:
points_left_of_ij = points_right_of_ij = False
ij_part_of_convex_hull = True
for k in range(n):
if k != i and k != j:
if k not in {i, j}:
det_k = _det(points[i], points[j], points[k])
if det_k > 0:

View File

@ -0,0 +1,112 @@
"""
The maximum subarray problem is the task of finding the continuous subarray that has the
maximum sum within a given array of numbers. For example, given the array
[-2, 1, -3, 4, -1, 2, 1, -5, 4], the contiguous subarray with the maximum sum is
[4, -1, 2, 1], which has a sum of 6.
This divide-and-conquer algorithm finds the maximum subarray in O(n log n) time.
"""
from __future__ import annotations
import time
from collections.abc import Sequence
from random import randint
from matplotlib import pyplot as plt
def max_subarray(
arr: Sequence[float], low: int, high: int
) -> tuple[int | None, int | None, float]:
"""
Solves the maximum subarray problem using divide and conquer.
:param arr: the given array of numbers
:param low: the start index
:param high: the end index
:return: the start index of the maximum subarray, the end index of the
maximum subarray, and the maximum subarray sum
>>> nums = [-2, 1, -3, 4, -1, 2, 1, -5, 4]
>>> max_subarray(nums, 0, len(nums) - 1)
(3, 6, 6)
>>> nums = [2, 8, 9]
>>> max_subarray(nums, 0, len(nums) - 1)
(0, 2, 19)
>>> nums = [0, 0]
>>> max_subarray(nums, 0, len(nums) - 1)
(0, 0, 0)
>>> nums = [-1.0, 0.0, 1.0]
>>> max_subarray(nums, 0, len(nums) - 1)
(2, 2, 1.0)
>>> nums = [-2, -3, -1, -4, -6]
>>> max_subarray(nums, 0, len(nums) - 1)
(2, 2, -1)
>>> max_subarray([], 0, 0)
(None, None, 0)
"""
if not arr:
return None, None, 0
if low == high:
return low, high, arr[low]
mid = (low + high) // 2
left_low, left_high, left_sum = max_subarray(arr, low, mid)
right_low, right_high, right_sum = max_subarray(arr, mid + 1, high)
cross_left, cross_right, cross_sum = max_cross_sum(arr, low, mid, high)
if left_sum >= right_sum and left_sum >= cross_sum:
return left_low, left_high, left_sum
elif right_sum >= left_sum and right_sum >= cross_sum:
return right_low, right_high, right_sum
return cross_left, cross_right, cross_sum
def max_cross_sum(
arr: Sequence[float], low: int, mid: int, high: int
) -> tuple[int, int, float]:
left_sum, max_left = float("-inf"), -1
right_sum, max_right = float("-inf"), -1
summ: int | float = 0
for i in range(mid, low - 1, -1):
summ += arr[i]
if summ > left_sum:
left_sum = summ
max_left = i
summ = 0
for i in range(mid + 1, high + 1):
summ += arr[i]
if summ > right_sum:
right_sum = summ
max_right = i
return max_left, max_right, (left_sum + right_sum)
def time_max_subarray(input_size: int) -> float:
arr = [randint(1, input_size) for _ in range(input_size)]
start = time.time()
max_subarray(arr, 0, input_size - 1)
end = time.time()
return end - start
def plot_runtimes() -> None:
input_sizes = [10, 100, 1000, 10000, 50000, 100000, 200000, 300000, 400000, 500000]
runtimes = [time_max_subarray(input_size) for input_size in input_sizes]
print("No of Inputs\t\tTime Taken")
for input_size, runtime in zip(input_sizes, runtimes):
print(input_size, "\t\t", runtime)
plt.plot(input_sizes, runtimes)
plt.xlabel("Number of Inputs")
plt.ylabel("Time taken in seconds")
plt.show()
if __name__ == "__main__":
"""
A random simulation of this algorithm.
"""
from doctest import testmod
testmod()

View File

@ -1,78 +0,0 @@
"""
Given a array of length n, max_subarray_sum() finds
the maximum of sum of contiguous sub-array using divide and conquer method.
Time complexity : O(n log n)
Ref : INTRODUCTION TO ALGORITHMS THIRD EDITION
(section : 4, sub-section : 4.1, page : 70)
"""
def max_sum_from_start(array):
"""This function finds the maximum contiguous sum of array from 0 index
Parameters :
array (list[int]) : given array
Returns :
max_sum (int) : maximum contiguous sum of array from 0 index
"""
array_sum = 0
max_sum = float("-inf")
for num in array:
array_sum += num
if array_sum > max_sum:
max_sum = array_sum
return max_sum
def max_cross_array_sum(array, left, mid, right):
"""This function finds the maximum contiguous sum of left and right arrays
Parameters :
array, left, mid, right (list[int], int, int, int)
Returns :
(int) : maximum of sum of contiguous sum of left and right arrays
"""
max_sum_of_left = max_sum_from_start(array[left : mid + 1][::-1])
max_sum_of_right = max_sum_from_start(array[mid + 1 : right + 1])
return max_sum_of_left + max_sum_of_right
def max_subarray_sum(array, left, right):
"""Maximum contiguous sub-array sum, using divide and conquer method
Parameters :
array, left, right (list[int], int, int) :
given array, current left index and current right index
Returns :
int : maximum of sum of contiguous sub-array
"""
# base case: array has only one element
if left == right:
return array[right]
# Recursion
mid = (left + right) // 2
left_half_sum = max_subarray_sum(array, left, mid)
right_half_sum = max_subarray_sum(array, mid + 1, right)
cross_sum = max_cross_array_sum(array, left, mid, right)
return max(left_half_sum, right_half_sum, cross_sum)
if __name__ == "__main__":
array = [-2, -5, 6, -2, -3, 1, 5, -6]
array_length = len(array)
print(
"Maximum sum of contiguous subarray:",
max_subarray_sum(array, 0, array_length - 1),
)

View File

@ -112,17 +112,19 @@ def strassen(matrix1: list, matrix2: list) -> list:
[[139, 163], [121, 134], [100, 121]]
"""
if matrix_dimensions(matrix1)[1] != matrix_dimensions(matrix2)[0]:
raise Exception(
msg = (
"Unable to multiply these matrices, please check the dimensions.\n"
f"Matrix A:{matrix1} \nMatrix B:{matrix2}"
f"Matrix A: {matrix1}\n"
f"Matrix B: {matrix2}"
)
raise Exception(msg)
dimension1 = matrix_dimensions(matrix1)
dimension2 = matrix_dimensions(matrix2)
if dimension1[0] == dimension1[1] and dimension2[0] == dimension2[1]:
return [matrix1, matrix2]
maximum = max(max(dimension1), max(dimension2))
maximum = max(*dimension1, *dimension2)
maxim = int(math.pow(2, math.ceil(math.log2(maximum))))
new_matrix1 = matrix1
new_matrix2 = matrix2

View File

@ -24,7 +24,7 @@ class Fibonacci:
return self.sequence[:index]
def main():
def main() -> None:
print(
"Fibonacci Series Using Dynamic Programming\n",
"Enter the index of the Fibonacci number you want to calculate ",

View File

@ -78,17 +78,18 @@ def knapsack_with_example_solution(w: int, wt: list, val: list):
num_items = len(wt)
if num_items != len(val):
raise ValueError(
"The number of weights must be the "
"same as the number of values.\nBut "
f"got {num_items} weights and {len(val)} values"
msg = (
"The number of weights must be the same as the number of values.\n"
f"But got {num_items} weights and {len(val)} values"
)
raise ValueError(msg)
for i in range(num_items):
if not isinstance(wt[i], int):
raise TypeError(
"All weights must be integers but "
f"got weight of type {type(wt[i])} at index {i}"
msg = (
"All weights must be integers but got weight of "
f"type {type(wt[i])} at index {i}"
)
raise TypeError(msg)
optimal_val, dp_table = knapsack(w, wt, val, num_items)
example_optional_set: set = set()

View File

@ -1,93 +0,0 @@
"""
author : Mayank Kumar Jha (mk9440)
"""
from __future__ import annotations
def find_max_sub_array(a, low, high):
if low == high:
return low, high, a[low]
else:
mid = (low + high) // 2
left_low, left_high, left_sum = find_max_sub_array(a, low, mid)
right_low, right_high, right_sum = find_max_sub_array(a, mid + 1, high)
cross_left, cross_right, cross_sum = find_max_cross_sum(a, low, mid, high)
if left_sum >= right_sum and left_sum >= cross_sum:
return left_low, left_high, left_sum
elif right_sum >= left_sum and right_sum >= cross_sum:
return right_low, right_high, right_sum
else:
return cross_left, cross_right, cross_sum
def find_max_cross_sum(a, low, mid, high):
left_sum, max_left = -999999999, -1
right_sum, max_right = -999999999, -1
summ = 0
for i in range(mid, low - 1, -1):
summ += a[i]
if summ > left_sum:
left_sum = summ
max_left = i
summ = 0
for i in range(mid + 1, high + 1):
summ += a[i]
if summ > right_sum:
right_sum = summ
max_right = i
return max_left, max_right, (left_sum + right_sum)
def max_sub_array(nums: list[int]) -> int:
"""
Finds the contiguous subarray which has the largest sum and return its sum.
>>> max_sub_array([-2, 1, -3, 4, -1, 2, 1, -5, 4])
6
An empty (sub)array has sum 0.
>>> max_sub_array([])
0
If all elements are negative, the largest subarray would be the empty array,
having the sum 0.
>>> max_sub_array([-1, -2, -3])
0
>>> max_sub_array([5, -2, -3])
5
>>> max_sub_array([31, -41, 59, 26, -53, 58, 97, -93, -23, 84])
187
"""
best = 0
current = 0
for i in nums:
current += i
current = max(current, 0)
best = max(best, current)
return best
if __name__ == "__main__":
"""
A random simulation of this algorithm.
"""
import time
from random import randint
from matplotlib import pyplot as plt
inputs = [10, 100, 1000, 10000, 50000, 100000, 200000, 300000, 400000, 500000]
tim = []
for i in inputs:
li = [randint(1, i) for j in range(i)]
strt = time.time()
(find_max_sub_array(li, 0, len(li) - 1))
end = time.time()
tim.append(end - strt)
print("No of Inputs Time Taken")
for i in range(len(inputs)):
print(inputs[i], "\t\t", tim[i])
plt.plot(inputs, tim)
plt.xlabel("Number of Inputs")
plt.ylabel("Time taken in seconds ")
plt.show()

View File

@ -0,0 +1,60 @@
"""
The maximum subarray sum problem is the task of finding the maximum sum that can be
obtained from a contiguous subarray within a given array of numbers. For example, given
the array [-2, 1, -3, 4, -1, 2, 1, -5, 4], the contiguous subarray with the maximum sum
is [4, -1, 2, 1], so the maximum subarray sum is 6.
Kadane's algorithm is a simple dynamic programming algorithm that solves the maximum
subarray sum problem in O(n) time and O(1) space.
Reference: https://en.wikipedia.org/wiki/Maximum_subarray_problem
"""
from collections.abc import Sequence
def max_subarray_sum(
arr: Sequence[float], allow_empty_subarrays: bool = False
) -> float:
"""
Solves the maximum subarray sum problem using Kadane's algorithm.
:param arr: the given array of numbers
:param allow_empty_subarrays: if True, then the algorithm considers empty subarrays
>>> max_subarray_sum([2, 8, 9])
19
>>> max_subarray_sum([0, 0])
0
>>> max_subarray_sum([-1.0, 0.0, 1.0])
1.0
>>> max_subarray_sum([1, 2, 3, 4, -2])
10
>>> max_subarray_sum([-2, 1, -3, 4, -1, 2, 1, -5, 4])
6
>>> max_subarray_sum([2, 3, -9, 8, -2])
8
>>> max_subarray_sum([-2, -3, -1, -4, -6])
-1
>>> max_subarray_sum([-2, -3, -1, -4, -6], allow_empty_subarrays=True)
0
>>> max_subarray_sum([])
0
"""
if not arr:
return 0
max_sum = 0 if allow_empty_subarrays else float("-inf")
curr_sum = 0.0
for num in arr:
curr_sum = max(0 if allow_empty_subarrays else num, curr_sum + num)
max_sum = max(max_sum, curr_sum)
return max_sum
if __name__ == "__main__":
from doctest import testmod
testmod()
nums = [-2, 1, -3, 4, -1, 2, 1, -5, 4]
print(f"{max_subarray_sum(nums) = }")

View File

@ -1,20 +0,0 @@
def max_subarray_sum(nums: list) -> int:
"""
>>> max_subarray_sum([6 , 9, -1, 3, -7, -5, 10])
17
"""
if not nums:
return 0
n = len(nums)
res, s, s_pre = nums[0], nums[0], nums[0]
for i in range(1, n):
s = max(nums[i], s_pre + nums[i])
s_pre = s
res = max(res, s)
return res
if __name__ == "__main__":
nums = [6, 9, -1, 3, -7, -5, 10]
print(max_subarray_sum(nums))

View File

@ -42,7 +42,8 @@ def min_steps_to_one(number: int) -> int:
"""
if number <= 0:
raise ValueError(f"n must be greater than 0. Got n = {number}")
msg = f"n must be greater than 0. Got n = {number}"
raise ValueError(msg)
table = [number + 1] * (number + 1)

View File

@ -177,13 +177,15 @@ def _enforce_args(n: int, prices: list):
the rod
"""
if n < 0:
raise ValueError(f"n must be greater than or equal to 0. Got n = {n}")
msg = f"n must be greater than or equal to 0. Got n = {n}"
raise ValueError(msg)
if n > len(prices):
raise ValueError(
"Each integral piece of rod must have a corresponding "
f"price. Got n = {n} but length of prices = {len(prices)}"
msg = (
"Each integral piece of rod must have a corresponding price. "
f"Got n = {n} but length of prices = {len(prices)}"
)
raise ValueError(msg)
def main():

View File

@ -297,11 +297,13 @@ def _validate_list(_object: Any, var_name: str) -> None:
"""
if not isinstance(_object, list):
raise ValueError(f"{var_name} must be a list")
msg = f"{var_name} must be a list"
raise ValueError(msg)
else:
for x in _object:
if not isinstance(x, str):
raise ValueError(f"{var_name} must be a list of strings")
msg = f"{var_name} must be a list of strings"
raise ValueError(msg)
def _validate_dicts(
@ -384,14 +386,15 @@ def _validate_dict(
ValueError: mock_name nested dictionary all values must be float
"""
if not isinstance(_object, dict):
raise ValueError(f"{var_name} must be a dict")
msg = f"{var_name} must be a dict"
raise ValueError(msg)
if not all(isinstance(x, str) for x in _object):
raise ValueError(f"{var_name} all keys must be strings")
msg = f"{var_name} all keys must be strings"
raise ValueError(msg)
if not all(isinstance(x, value_type) for x in _object.values()):
nested_text = "nested dictionary " if nested else ""
raise ValueError(
f"{var_name} {nested_text}all values must be {value_type.__name__}"
)
msg = f"{var_name} {nested_text}all values must be {value_type.__name__}"
raise ValueError(msg)
if __name__ == "__main__":

View File

@ -23,7 +23,8 @@ def resistor_parallel(resistors: list[float]) -> float:
index = 0
for resistor in resistors:
if resistor <= 0:
raise ValueError(f"Resistor at index {index} has a negative or zero value!")
msg = f"Resistor at index {index} has a negative or zero value!"
raise ValueError(msg)
first_sum += 1 / float(resistor)
index += 1
return 1 / first_sum
@ -47,7 +48,8 @@ def resistor_series(resistors: list[float]) -> float:
for resistor in resistors:
sum_r += resistor
if resistor < 0:
raise ValueError(f"Resistor at index {index} has a negative value!")
msg = f"Resistor at index {index} has a negative value!"
raise ValueError(msg)
index += 1
return sum_r

View File

@ -4,7 +4,7 @@ from __future__ import annotations
def simple_interest(
principal: float, daily_interest_rate: float, days_between_payments: int
principal: float, daily_interest_rate: float, days_between_payments: float
) -> float:
"""
>>> simple_interest(18000.0, 0.06, 3)
@ -42,7 +42,7 @@ def simple_interest(
def compound_interest(
principal: float,
nominal_annual_interest_rate_percentage: float,
number_of_compounding_periods: int,
number_of_compounding_periods: float,
) -> float:
"""
>>> compound_interest(10000.0, 0.05, 3)
@ -77,6 +77,43 @@ def compound_interest(
)
def apr_interest(
principal: float,
nominal_annual_percentage_rate: float,
number_of_years: float,
) -> float:
"""
>>> apr_interest(10000.0, 0.05, 3)
1618.223072263547
>>> apr_interest(10000.0, 0.05, 1)
512.6749646744732
>>> apr_interest(0.5, 0.05, 3)
0.08091115361317736
>>> apr_interest(10000.0, 0.06, -4)
Traceback (most recent call last):
...
ValueError: number_of_years must be > 0
>>> apr_interest(10000.0, -3.5, 3.0)
Traceback (most recent call last):
...
ValueError: nominal_annual_percentage_rate must be >= 0
>>> apr_interest(-5500.0, 0.01, 5)
Traceback (most recent call last):
...
ValueError: principal must be > 0
"""
if number_of_years <= 0:
raise ValueError("number_of_years must be > 0")
if nominal_annual_percentage_rate < 0:
raise ValueError("nominal_annual_percentage_rate must be >= 0")
if principal <= 0:
raise ValueError("principal must be > 0")
return compound_interest(
principal, nominal_annual_percentage_rate / 365, number_of_years * 365
)
if __name__ == "__main__":
import doctest

View File

@ -0,0 +1,42 @@
"""
Reference: https://www.investopedia.com/terms/p/presentvalue.asp
An algorithm that calculates the present value of a stream of yearly cash flows given...
1. The discount rate (as a decimal, not a percent)
2. An array of cash flows, with the index of the cash flow being the associated year
Note: This algorithm assumes that cash flows are paid at the end of the specified year
"""
def present_value(discount_rate: float, cash_flows: list[float]) -> float:
"""
>>> present_value(0.13, [10, 20.70, -293, 297])
4.69
>>> present_value(0.07, [-109129.39, 30923.23, 15098.93, 29734,39])
-42739.63
>>> present_value(0.07, [109129.39, 30923.23, 15098.93, 29734,39])
175519.15
>>> present_value(-1, [109129.39, 30923.23, 15098.93, 29734,39])
Traceback (most recent call last):
...
ValueError: Discount rate cannot be negative
>>> present_value(0.03, [])
Traceback (most recent call last):
...
ValueError: Cash flows list cannot be empty
"""
if discount_rate < 0:
raise ValueError("Discount rate cannot be negative")
if not cash_flows:
raise ValueError("Cash flows list cannot be empty")
present_value = sum(
cash_flow / ((1 + discount_rate) ** i) for i, cash_flow in enumerate(cash_flows)
)
return round(present_value, ndigits=2)
if __name__ == "__main__":
import doctest
doctest.testmod()

View File

@ -82,3 +82,4 @@ if __name__ == "__main__":
vertices = [(-175, -125), (0, 175), (175, -125)] # vertices of triangle
triangle(vertices[0], vertices[1], vertices[2], int(sys.argv[1]))
turtle.Screen().exitonclick()

View File

@ -21,6 +21,54 @@ MUTATION_PROBABILITY = 0.4
random.seed(random.randint(0, 1000))
def evaluate(item: str, main_target: str) -> tuple[str, float]:
"""
Evaluate how similar the item is with the target by just
counting each char in the right position
>>> evaluate("Helxo Worlx", "Hello World")
('Helxo Worlx', 9.0)
"""
score = len([g for position, g in enumerate(item) if g == main_target[position]])
return (item, float(score))
def crossover(parent_1: str, parent_2: str) -> tuple[str, str]:
"""Slice and combine two string at a random point."""
random_slice = random.randint(0, len(parent_1) - 1)
child_1 = parent_1[:random_slice] + parent_2[random_slice:]
child_2 = parent_2[:random_slice] + parent_1[random_slice:]
return (child_1, child_2)
def mutate(child: str, genes: list[str]) -> str:
"""Mutate a random gene of a child with another one from the list."""
child_list = list(child)
if random.uniform(0, 1) < MUTATION_PROBABILITY:
child_list[random.randint(0, len(child)) - 1] = random.choice(genes)
return "".join(child_list)
# Select, crossover and mutate a new population.
def select(
parent_1: tuple[str, float],
population_score: list[tuple[str, float]],
genes: list[str],
) -> list[str]:
"""Select the second parent and generate new population"""
pop = []
# Generate more children proportionally to the fitness score.
child_n = int(parent_1[1] * 100) + 1
child_n = 10 if child_n >= 10 else child_n
for _ in range(child_n):
parent_2 = population_score[random.randint(0, N_SELECTED)][0]
child_1, child_2 = crossover(parent_1[0], parent_2)
# Append new string to the population list.
pop.append(mutate(child_1, genes))
pop.append(mutate(child_2, genes))
return pop
def basic(target: str, genes: list[str], debug: bool = True) -> tuple[int, int, str]:
"""
Verify that the target contains no genes besides the ones inside genes variable.
@ -48,13 +96,13 @@ def basic(target: str, genes: list[str], debug: bool = True) -> tuple[int, int,
# Verify if N_POPULATION is bigger than N_SELECTED
if N_POPULATION < N_SELECTED:
raise ValueError(f"{N_POPULATION} must be bigger than {N_SELECTED}")
msg = f"{N_POPULATION} must be bigger than {N_SELECTED}"
raise ValueError(msg)
# Verify that the target contains no genes besides the ones inside genes variable.
not_in_genes_list = sorted({c for c in target if c not in genes})
if not_in_genes_list:
raise ValueError(
f"{not_in_genes_list} is not in genes list, evolution cannot converge"
)
msg = f"{not_in_genes_list} is not in genes list, evolution cannot converge"
raise ValueError(msg)
# Generate random starting population.
population = []
@ -70,17 +118,6 @@ def basic(target: str, genes: list[str], debug: bool = True) -> tuple[int, int,
total_population += len(population)
# Random population created. Now it's time to evaluate.
def evaluate(item: str, main_target: str = target) -> tuple[str, float]:
"""
Evaluate how similar the item is with the target by just
counting each char in the right position
>>> evaluate("Helxo Worlx", Hello World)
["Helxo Worlx", 9]
"""
score = len(
[g for position, g in enumerate(item) if g == main_target[position]]
)
return (item, float(score))
# Adding a bit of concurrency can make everything faster,
#
@ -94,7 +131,7 @@ def basic(target: str, genes: list[str], debug: bool = True) -> tuple[int, int,
#
# but with a simple algorithm like this, it will probably be slower.
# We just need to call evaluate for every item inside the population.
population_score = [evaluate(item) for item in population]
population_score = [evaluate(item, target) for item in population]
# Check if there is a matching evolution.
population_score = sorted(population_score, key=lambda x: x[1], reverse=True)
@ -121,41 +158,9 @@ def basic(target: str, genes: list[str], debug: bool = True) -> tuple[int, int,
(item, score / len(target)) for item, score in population_score
]
# Select, crossover and mutate a new population.
def select(parent_1: tuple[str, float]) -> list[str]:
"""Select the second parent and generate new population"""
pop = []
# Generate more children proportionally to the fitness score.
child_n = int(parent_1[1] * 100) + 1
child_n = 10 if child_n >= 10 else child_n
for _ in range(child_n):
parent_2 = population_score[ # noqa: B023
random.randint(0, N_SELECTED)
][0]
child_1, child_2 = crossover(parent_1[0], parent_2)
# Append new string to the population list.
pop.append(mutate(child_1))
pop.append(mutate(child_2))
return pop
def crossover(parent_1: str, parent_2: str) -> tuple[str, str]:
"""Slice and combine two string at a random point."""
random_slice = random.randint(0, len(parent_1) - 1)
child_1 = parent_1[:random_slice] + parent_2[random_slice:]
child_2 = parent_2[:random_slice] + parent_1[random_slice:]
return (child_1, child_2)
def mutate(child: str) -> str:
"""Mutate a random gene of a child with another one from the list."""
child_list = list(child)
if random.uniform(0, 1) < MUTATION_PROBABILITY:
child_list[random.randint(0, len(child)) - 1] = random.choice(genes)
return "".join(child_list)
# This is selection
for i in range(N_SELECTED):
population.extend(select(population_score[int(i)]))
population.extend(select(population_score[int(i)], population_score, genes))
# Check if the population has already reached the maximum value and if so,
# break the cycle. If this check is disabled, the algorithm will take
# forever to compute large strings, but will also calculate small strings in

View File

@ -28,9 +28,8 @@ def convert_to_2d(
TypeError: Input values must either be float or int: ['1', 2, 3, 10, 10]
"""
if not all(isinstance(val, (float, int)) for val in locals().values()):
raise TypeError(
"Input values must either be float or int: " f"{list(locals().values())}"
)
msg = f"Input values must either be float or int: {list(locals().values())}"
raise TypeError(msg)
projected_x = ((x * distance) / (z + distance)) * scale
projected_y = ((y * distance) / (z + distance)) * scale
return projected_x, projected_y
@ -71,10 +70,11 @@ def rotate(
input_variables = locals()
del input_variables["axis"]
if not all(isinstance(val, (float, int)) for val in input_variables.values()):
raise TypeError(
msg = (
"Input values except axis must either be float or int: "
f"{list(input_variables.values())}"
)
raise TypeError(msg)
angle = (angle % 360) / 450 * 180 / math.pi
if axis == "z":
new_x = x * math.cos(angle) - y * math.sin(angle)

View File

@ -73,9 +73,10 @@ class Graph:
target_vertex_parent = self.parent.get(target_vertex)
if target_vertex_parent is None:
raise ValueError(
msg = (
f"No path from vertex: {self.source_vertex} to vertex: {target_vertex}"
)
raise ValueError(msg)
return self.shortest_path(target_vertex_parent) + f"->{target_vertex}"

View File

@ -0,0 +1,89 @@
"""
This script implements the Dijkstra algorithm on a binary grid.
The grid consists of 0s and 1s, where 1 represents
a walkable node and 0 represents an obstacle.
The algorithm finds the shortest path from a start node to a destination node.
Diagonal movement can be allowed or disallowed.
"""
from heapq import heappop, heappush
import numpy as np
def dijkstra(
grid: np.ndarray,
source: tuple[int, int],
destination: tuple[int, int],
allow_diagonal: bool,
) -> tuple[float | int, list[tuple[int, int]]]:
"""
Implements Dijkstra's algorithm on a binary grid.
Args:
grid (np.ndarray): A 2D numpy array representing the grid.
1 represents a walkable node and 0 represents an obstacle.
source (Tuple[int, int]): A tuple representing the start node.
destination (Tuple[int, int]): A tuple representing the
destination node.
allow_diagonal (bool): A boolean determining whether
diagonal movements are allowed.
Returns:
Tuple[Union[float, int], List[Tuple[int, int]]]:
The shortest distance from the start node to the destination node
and the shortest path as a list of nodes.
>>> dijkstra(np.array([[1, 1, 1], [0, 1, 0], [0, 1, 1]]), (0, 0), (2, 2), False)
(4.0, [(0, 0), (0, 1), (1, 1), (2, 1), (2, 2)])
>>> dijkstra(np.array([[1, 1, 1], [0, 1, 0], [0, 1, 1]]), (0, 0), (2, 2), True)
(2.0, [(0, 0), (1, 1), (2, 2)])
>>> dijkstra(np.array([[1, 1, 1], [0, 0, 1], [0, 1, 1]]), (0, 0), (2, 2), False)
(4.0, [(0, 0), (0, 1), (0, 2), (1, 2), (2, 2)])
"""
rows, cols = grid.shape
dx = [-1, 1, 0, 0]
dy = [0, 0, -1, 1]
if allow_diagonal:
dx += [-1, -1, 1, 1]
dy += [-1, 1, -1, 1]
queue, visited = [(0, source)], set()
matrix = np.full((rows, cols), np.inf)
matrix[source] = 0
predecessors = np.empty((rows, cols), dtype=object)
predecessors[source] = None
while queue:
(dist, (x, y)) = heappop(queue)
if (x, y) in visited:
continue
visited.add((x, y))
if (x, y) == destination:
path = []
while (x, y) != source:
path.append((x, y))
x, y = predecessors[x, y]
path.append(source) # add the source manually
path.reverse()
return matrix[destination], path
for i in range(len(dx)):
nx, ny = x + dx[i], y + dy[i]
if 0 <= nx < rows and 0 <= ny < cols:
next_node = grid[nx][ny]
if next_node == 1 and matrix[nx, ny] > dist + 1:
heappush(queue, (dist + 1, (nx, ny)))
matrix[nx, ny] = dist + 1
predecessors[nx, ny] = (x, y)
return np.inf, []
if __name__ == "__main__":
import doctest
doctest.testmod()

View File

@ -39,7 +39,7 @@ class DirectedGraph:
stack = []
visited = []
if s == -2:
s = list(self.graph)[0]
s = next(iter(self.graph))
stack.append(s)
visited.append(s)
ss = s
@ -87,7 +87,7 @@ class DirectedGraph:
d = deque()
visited = []
if s == -2:
s = list(self.graph)[0]
s = next(iter(self.graph))
d.append(s)
visited.append(s)
while d:
@ -114,7 +114,7 @@ class DirectedGraph:
stack = []
visited = []
if s == -2:
s = list(self.graph)[0]
s = next(iter(self.graph))
stack.append(s)
visited.append(s)
ss = s
@ -146,7 +146,7 @@ class DirectedGraph:
def cycle_nodes(self):
stack = []
visited = []
s = list(self.graph)[0]
s = next(iter(self.graph))
stack.append(s)
visited.append(s)
parent = -2
@ -199,7 +199,7 @@ class DirectedGraph:
def has_cycle(self):
stack = []
visited = []
s = list(self.graph)[0]
s = next(iter(self.graph))
stack.append(s)
visited.append(s)
parent = -2
@ -305,7 +305,7 @@ class Graph:
stack = []
visited = []
if s == -2:
s = list(self.graph)[0]
s = next(iter(self.graph))
stack.append(s)
visited.append(s)
ss = s
@ -353,7 +353,7 @@ class Graph:
d = deque()
visited = []
if s == -2:
s = list(self.graph)[0]
s = next(iter(self.graph))
d.append(s)
visited.append(s)
while d:
@ -371,7 +371,7 @@ class Graph:
def cycle_nodes(self):
stack = []
visited = []
s = list(self.graph)[0]
s = next(iter(self.graph))
stack.append(s)
visited.append(s)
parent = -2
@ -424,7 +424,7 @@ class Graph:
def has_cycle(self):
stack = []
visited = []
s = list(self.graph)[0]
s = next(iter(self.graph))
stack.append(s)
visited.append(s)
parent = -2

View File

@ -113,7 +113,7 @@ class PushRelabelExecutor(MaximumFlowAlgorithmExecutor):
vertices_list = [
i
for i in range(self.verticies_count)
if i != self.source_index and i != self.sink_index
if i not in {self.source_index, self.sink_index}
]
# move through list

View File

@ -20,7 +20,7 @@ def check_circuit_or_path(graph, max_node):
odd_degree_nodes = 0
odd_node = -1
for i in range(max_node):
if i not in graph.keys():
if i not in graph:
continue
if len(graph[i]) % 2 == 1:
odd_degree_nodes += 1

View File

@ -0,0 +1,589 @@
#!/usr/bin/env python3
"""
Author: Vikram Nithyanandam
Description:
The following implementation is a robust unweighted Graph data structure
implemented using an adjacency list. This vertices and edges of this graph can be
effectively initialized and modified while storing your chosen generic
value in each vertex.
Adjacency List: https://en.wikipedia.org/wiki/Adjacency_list
Potential Future Ideas:
- Add a flag to set edge weights on and set edge weights
- Make edge weights and vertex values customizable to store whatever the client wants
- Support multigraph functionality if the client wants it
"""
from __future__ import annotations
import random
import unittest
from pprint import pformat
from typing import Generic, TypeVar
T = TypeVar("T")
class GraphAdjacencyList(Generic[T]):
def __init__(
self, vertices: list[T], edges: list[list[T]], directed: bool = True
) -> None:
"""
Parameters:
- vertices: (list[T]) The list of vertex names the client wants to
pass in. Default is empty.
- edges: (list[list[T]]) The list of edges the client wants to
pass in. Each edge is a 2-element list. Default is empty.
- directed: (bool) Indicates if graph is directed or undirected.
Default is True.
"""
self.adj_list: dict[T, list[T]] = {} # dictionary of lists of T
self.directed = directed
# Falsey checks
edges = edges or []
vertices = vertices or []
for vertex in vertices:
self.add_vertex(vertex)
for edge in edges:
if len(edge) != 2:
msg = f"Invalid input: {edge} is the wrong length."
raise ValueError(msg)
self.add_edge(edge[0], edge[1])
def add_vertex(self, vertex: T) -> None:
"""
Adds a vertex to the graph. If the given vertex already exists,
a ValueError will be thrown.
"""
if self.contains_vertex(vertex):
msg = f"Incorrect input: {vertex} is already in the graph."
raise ValueError(msg)
self.adj_list[vertex] = []
def add_edge(self, source_vertex: T, destination_vertex: T) -> None:
"""
Creates an edge from source vertex to destination vertex. If any
given vertex doesn't exist or the edge already exists, a ValueError
will be thrown.
"""
if not (
self.contains_vertex(source_vertex)
and self.contains_vertex(destination_vertex)
):
msg = (
f"Incorrect input: Either {source_vertex} or "
f"{destination_vertex} does not exist"
)
raise ValueError(msg)
if self.contains_edge(source_vertex, destination_vertex):
msg = (
"Incorrect input: The edge already exists between "
f"{source_vertex} and {destination_vertex}"
)
raise ValueError(msg)
# add the destination vertex to the list associated with the source vertex
# and vice versa if not directed
self.adj_list[source_vertex].append(destination_vertex)
if not self.directed:
self.adj_list[destination_vertex].append(source_vertex)
def remove_vertex(self, vertex: T) -> None:
"""
Removes the given vertex from the graph and deletes all incoming and
outgoing edges from the given vertex as well. If the given vertex
does not exist, a ValueError will be thrown.
"""
if not self.contains_vertex(vertex):
msg = f"Incorrect input: {vertex} does not exist in this graph."
raise ValueError(msg)
if not self.directed:
# If not directed, find all neighboring vertices and delete all references
# of edges connecting to the given vertex
for neighbor in self.adj_list[vertex]:
self.adj_list[neighbor].remove(vertex)
else:
# If directed, search all neighbors of all vertices and delete all
# references of edges connecting to the given vertex
for edge_list in self.adj_list.values():
if vertex in edge_list:
edge_list.remove(vertex)
# Finally, delete the given vertex and all of its outgoing edge references
self.adj_list.pop(vertex)
def remove_edge(self, source_vertex: T, destination_vertex: T) -> None:
"""
Removes the edge between the two vertices. If any given vertex
doesn't exist or the edge does not exist, a ValueError will be thrown.
"""
if not (
self.contains_vertex(source_vertex)
and self.contains_vertex(destination_vertex)
):
msg = (
f"Incorrect input: Either {source_vertex} or "
f"{destination_vertex} does not exist"
)
raise ValueError(msg)
if not self.contains_edge(source_vertex, destination_vertex):
msg = (
"Incorrect input: The edge does NOT exist between "
f"{source_vertex} and {destination_vertex}"
)
raise ValueError(msg)
# remove the destination vertex from the list associated with the source
# vertex and vice versa if not directed
self.adj_list[source_vertex].remove(destination_vertex)
if not self.directed:
self.adj_list[destination_vertex].remove(source_vertex)
def contains_vertex(self, vertex: T) -> bool:
"""
Returns True if the graph contains the vertex, False otherwise.
"""
return vertex in self.adj_list
def contains_edge(self, source_vertex: T, destination_vertex: T) -> bool:
"""
Returns True if the graph contains the edge from the source_vertex to the
destination_vertex, False otherwise. If any given vertex doesn't exist, a
ValueError will be thrown.
"""
if not (
self.contains_vertex(source_vertex)
and self.contains_vertex(destination_vertex)
):
msg = (
f"Incorrect input: Either {source_vertex} "
f"or {destination_vertex} does not exist."
)
raise ValueError(msg)
return destination_vertex in self.adj_list[source_vertex]
def clear_graph(self) -> None:
"""
Clears all vertices and edges.
"""
self.adj_list = {}
def __repr__(self) -> str:
return pformat(self.adj_list)
class TestGraphAdjacencyList(unittest.TestCase):
def __assert_graph_edge_exists_check(
self,
undirected_graph: GraphAdjacencyList,
directed_graph: GraphAdjacencyList,
edge: list[int],
) -> None:
self.assertTrue(undirected_graph.contains_edge(edge[0], edge[1]))
self.assertTrue(undirected_graph.contains_edge(edge[1], edge[0]))
self.assertTrue(directed_graph.contains_edge(edge[0], edge[1]))
def __assert_graph_edge_does_not_exist_check(
self,
undirected_graph: GraphAdjacencyList,
directed_graph: GraphAdjacencyList,
edge: list[int],
) -> None:
self.assertFalse(undirected_graph.contains_edge(edge[0], edge[1]))
self.assertFalse(undirected_graph.contains_edge(edge[1], edge[0]))
self.assertFalse(directed_graph.contains_edge(edge[0], edge[1]))
def __assert_graph_vertex_exists_check(
self,
undirected_graph: GraphAdjacencyList,
directed_graph: GraphAdjacencyList,
vertex: int,
) -> None:
self.assertTrue(undirected_graph.contains_vertex(vertex))
self.assertTrue(directed_graph.contains_vertex(vertex))
def __assert_graph_vertex_does_not_exist_check(
self,
undirected_graph: GraphAdjacencyList,
directed_graph: GraphAdjacencyList,
vertex: int,
) -> None:
self.assertFalse(undirected_graph.contains_vertex(vertex))
self.assertFalse(directed_graph.contains_vertex(vertex))
def __generate_random_edges(
self, vertices: list[int], edge_pick_count: int
) -> list[list[int]]:
self.assertTrue(edge_pick_count <= len(vertices))
random_source_vertices: list[int] = random.sample(
vertices[0 : int(len(vertices) / 2)], edge_pick_count
)
random_destination_vertices: list[int] = random.sample(
vertices[int(len(vertices) / 2) :], edge_pick_count
)
random_edges: list[list[int]] = []
for source in random_source_vertices:
for dest in random_destination_vertices:
random_edges.append([source, dest])
return random_edges
def __generate_graphs(
self, vertex_count: int, min_val: int, max_val: int, edge_pick_count: int
) -> tuple[GraphAdjacencyList, GraphAdjacencyList, list[int], list[list[int]]]:
if max_val - min_val + 1 < vertex_count:
raise ValueError(
"Will result in duplicate vertices. Either increase range "
"between min_val and max_val or decrease vertex count."
)
# generate graph input
random_vertices: list[int] = random.sample(
range(min_val, max_val + 1), vertex_count
)
random_edges: list[list[int]] = self.__generate_random_edges(
random_vertices, edge_pick_count
)
# build graphs
undirected_graph = GraphAdjacencyList(
vertices=random_vertices, edges=random_edges, directed=False
)
directed_graph = GraphAdjacencyList(
vertices=random_vertices, edges=random_edges, directed=True
)
return undirected_graph, directed_graph, random_vertices, random_edges
def test_init_check(self) -> None:
(
undirected_graph,
directed_graph,
random_vertices,
random_edges,
) = self.__generate_graphs(20, 0, 100, 4)
# test graph initialization with vertices and edges
for num in random_vertices:
self.__assert_graph_vertex_exists_check(
undirected_graph, directed_graph, num
)
for edge in random_edges:
self.__assert_graph_edge_exists_check(
undirected_graph, directed_graph, edge
)
self.assertFalse(undirected_graph.directed)
self.assertTrue(directed_graph.directed)
def test_contains_vertex(self) -> None:
random_vertices: list[int] = random.sample(range(101), 20)
# Build graphs WITHOUT edges
undirected_graph = GraphAdjacencyList(
vertices=random_vertices, edges=[], directed=False
)
directed_graph = GraphAdjacencyList(
vertices=random_vertices, edges=[], directed=True
)
# Test contains_vertex
for num in range(101):
self.assertEqual(
num in random_vertices, undirected_graph.contains_vertex(num)
)
self.assertEqual(
num in random_vertices, directed_graph.contains_vertex(num)
)
def test_add_vertices(self) -> None:
random_vertices: list[int] = random.sample(range(101), 20)
# build empty graphs
undirected_graph: GraphAdjacencyList = GraphAdjacencyList(
vertices=[], edges=[], directed=False
)
directed_graph: GraphAdjacencyList = GraphAdjacencyList(
vertices=[], edges=[], directed=True
)
# run add_vertex
for num in random_vertices:
undirected_graph.add_vertex(num)
for num in random_vertices:
directed_graph.add_vertex(num)
# test add_vertex worked
for num in random_vertices:
self.__assert_graph_vertex_exists_check(
undirected_graph, directed_graph, num
)
def test_remove_vertices(self) -> None:
random_vertices: list[int] = random.sample(range(101), 20)
# build graphs WITHOUT edges
undirected_graph = GraphAdjacencyList(
vertices=random_vertices, edges=[], directed=False
)
directed_graph = GraphAdjacencyList(
vertices=random_vertices, edges=[], directed=True
)
# test remove_vertex worked
for num in random_vertices:
self.__assert_graph_vertex_exists_check(
undirected_graph, directed_graph, num
)
undirected_graph.remove_vertex(num)
directed_graph.remove_vertex(num)
self.__assert_graph_vertex_does_not_exist_check(
undirected_graph, directed_graph, num
)
def test_add_and_remove_vertices_repeatedly(self) -> None:
random_vertices1: list[int] = random.sample(range(51), 20)
random_vertices2: list[int] = random.sample(range(51, 101), 20)
# build graphs WITHOUT edges
undirected_graph = GraphAdjacencyList(
vertices=random_vertices1, edges=[], directed=False
)
directed_graph = GraphAdjacencyList(
vertices=random_vertices1, edges=[], directed=True
)
# test adding and removing vertices
for i, _ in enumerate(random_vertices1):
undirected_graph.add_vertex(random_vertices2[i])
directed_graph.add_vertex(random_vertices2[i])
self.__assert_graph_vertex_exists_check(
undirected_graph, directed_graph, random_vertices2[i]
)
undirected_graph.remove_vertex(random_vertices1[i])
directed_graph.remove_vertex(random_vertices1[i])
self.__assert_graph_vertex_does_not_exist_check(
undirected_graph, directed_graph, random_vertices1[i]
)
# remove all vertices
for i, _ in enumerate(random_vertices1):
undirected_graph.remove_vertex(random_vertices2[i])
directed_graph.remove_vertex(random_vertices2[i])
self.__assert_graph_vertex_does_not_exist_check(
undirected_graph, directed_graph, random_vertices2[i]
)
def test_contains_edge(self) -> None:
# generate graphs and graph input
vertex_count = 20
(
undirected_graph,
directed_graph,
random_vertices,
random_edges,
) = self.__generate_graphs(vertex_count, 0, 100, 4)
# generate all possible edges for testing
all_possible_edges: list[list[int]] = []
for i in range(vertex_count - 1):
for j in range(i + 1, vertex_count):
all_possible_edges.append([random_vertices[i], random_vertices[j]])
all_possible_edges.append([random_vertices[j], random_vertices[i]])
# test contains_edge function
for edge in all_possible_edges:
if edge in random_edges:
self.__assert_graph_edge_exists_check(
undirected_graph, directed_graph, edge
)
elif [edge[1], edge[0]] in random_edges:
# since this edge exists for undirected but the reverse
# may not exist for directed
self.__assert_graph_edge_exists_check(
undirected_graph, directed_graph, [edge[1], edge[0]]
)
else:
self.__assert_graph_edge_does_not_exist_check(
undirected_graph, directed_graph, edge
)
def test_add_edge(self) -> None:
# generate graph input
random_vertices: list[int] = random.sample(range(101), 15)
random_edges: list[list[int]] = self.__generate_random_edges(random_vertices, 4)
# build graphs WITHOUT edges
undirected_graph = GraphAdjacencyList(
vertices=random_vertices, edges=[], directed=False
)
directed_graph = GraphAdjacencyList(
vertices=random_vertices, edges=[], directed=True
)
# run and test add_edge
for edge in random_edges:
undirected_graph.add_edge(edge[0], edge[1])
directed_graph.add_edge(edge[0], edge[1])
self.__assert_graph_edge_exists_check(
undirected_graph, directed_graph, edge
)
def test_remove_edge(self) -> None:
# generate graph input and graphs
(
undirected_graph,
directed_graph,
random_vertices,
random_edges,
) = self.__generate_graphs(20, 0, 100, 4)
# run and test remove_edge
for edge in random_edges:
self.__assert_graph_edge_exists_check(
undirected_graph, directed_graph, edge
)
undirected_graph.remove_edge(edge[0], edge[1])
directed_graph.remove_edge(edge[0], edge[1])
self.__assert_graph_edge_does_not_exist_check(
undirected_graph, directed_graph, edge
)
def test_add_and_remove_edges_repeatedly(self) -> None:
(
undirected_graph,
directed_graph,
random_vertices,
random_edges,
) = self.__generate_graphs(20, 0, 100, 4)
# make some more edge options!
more_random_edges: list[list[int]] = []
while len(more_random_edges) != len(random_edges):
edges: list[list[int]] = self.__generate_random_edges(random_vertices, 4)
for edge in edges:
if len(more_random_edges) == len(random_edges):
break
elif edge not in more_random_edges and edge not in random_edges:
more_random_edges.append(edge)
for i, _ in enumerate(random_edges):
undirected_graph.add_edge(more_random_edges[i][0], more_random_edges[i][1])
directed_graph.add_edge(more_random_edges[i][0], more_random_edges[i][1])
self.__assert_graph_edge_exists_check(
undirected_graph, directed_graph, more_random_edges[i]
)
undirected_graph.remove_edge(random_edges[i][0], random_edges[i][1])
directed_graph.remove_edge(random_edges[i][0], random_edges[i][1])
self.__assert_graph_edge_does_not_exist_check(
undirected_graph, directed_graph, random_edges[i]
)
def test_add_vertex_exception_check(self) -> None:
(
undirected_graph,
directed_graph,
random_vertices,
random_edges,
) = self.__generate_graphs(20, 0, 100, 4)
for vertex in random_vertices:
with self.assertRaises(ValueError):
undirected_graph.add_vertex(vertex)
with self.assertRaises(ValueError):
directed_graph.add_vertex(vertex)
def test_remove_vertex_exception_check(self) -> None:
(
undirected_graph,
directed_graph,
random_vertices,
random_edges,
) = self.__generate_graphs(20, 0, 100, 4)
for i in range(101):
if i not in random_vertices:
with self.assertRaises(ValueError):
undirected_graph.remove_vertex(i)
with self.assertRaises(ValueError):
directed_graph.remove_vertex(i)
def test_add_edge_exception_check(self) -> None:
(
undirected_graph,
directed_graph,
random_vertices,
random_edges,
) = self.__generate_graphs(20, 0, 100, 4)
for edge in random_edges:
with self.assertRaises(ValueError):
undirected_graph.add_edge(edge[0], edge[1])
with self.assertRaises(ValueError):
directed_graph.add_edge(edge[0], edge[1])
def test_remove_edge_exception_check(self) -> None:
(
undirected_graph,
directed_graph,
random_vertices,
random_edges,
) = self.__generate_graphs(20, 0, 100, 4)
more_random_edges: list[list[int]] = []
while len(more_random_edges) != len(random_edges):
edges: list[list[int]] = self.__generate_random_edges(random_vertices, 4)
for edge in edges:
if len(more_random_edges) == len(random_edges):
break
elif edge not in more_random_edges and edge not in random_edges:
more_random_edges.append(edge)
for edge in more_random_edges:
with self.assertRaises(ValueError):
undirected_graph.remove_edge(edge[0], edge[1])
with self.assertRaises(ValueError):
directed_graph.remove_edge(edge[0], edge[1])
def test_contains_edge_exception_check(self) -> None:
(
undirected_graph,
directed_graph,
random_vertices,
random_edges,
) = self.__generate_graphs(20, 0, 100, 4)
for vertex in random_vertices:
with self.assertRaises(ValueError):
undirected_graph.contains_edge(vertex, 102)
with self.assertRaises(ValueError):
directed_graph.contains_edge(vertex, 102)
with self.assertRaises(ValueError):
undirected_graph.contains_edge(103, 102)
with self.assertRaises(ValueError):
directed_graph.contains_edge(103, 102)
if __name__ == "__main__":
unittest.main()

View File

@ -0,0 +1,608 @@
#!/usr/bin/env python3
"""
Author: Vikram Nithyanandam
Description:
The following implementation is a robust unweighted Graph data structure
implemented using an adjacency matrix. This vertices and edges of this graph can be
effectively initialized and modified while storing your chosen generic
value in each vertex.
Adjacency Matrix: https://mathworld.wolfram.com/AdjacencyMatrix.html
Potential Future Ideas:
- Add a flag to set edge weights on and set edge weights
- Make edge weights and vertex values customizable to store whatever the client wants
- Support multigraph functionality if the client wants it
"""
from __future__ import annotations
import random
import unittest
from pprint import pformat
from typing import Generic, TypeVar
T = TypeVar("T")
class GraphAdjacencyMatrix(Generic[T]):
def __init__(
self, vertices: list[T], edges: list[list[T]], directed: bool = True
) -> None:
"""
Parameters:
- vertices: (list[T]) The list of vertex names the client wants to
pass in. Default is empty.
- edges: (list[list[T]]) The list of edges the client wants to
pass in. Each edge is a 2-element list. Default is empty.
- directed: (bool) Indicates if graph is directed or undirected.
Default is True.
"""
self.directed = directed
self.vertex_to_index: dict[T, int] = {}
self.adj_matrix: list[list[int]] = []
# Falsey checks
edges = edges or []
vertices = vertices or []
for vertex in vertices:
self.add_vertex(vertex)
for edge in edges:
if len(edge) != 2:
msg = f"Invalid input: {edge} must have length 2."
raise ValueError(msg)
self.add_edge(edge[0], edge[1])
def add_edge(self, source_vertex: T, destination_vertex: T) -> None:
"""
Creates an edge from source vertex to destination vertex. If any
given vertex doesn't exist or the edge already exists, a ValueError
will be thrown.
"""
if not (
self.contains_vertex(source_vertex)
and self.contains_vertex(destination_vertex)
):
msg = (
f"Incorrect input: Either {source_vertex} or "
f"{destination_vertex} does not exist"
)
raise ValueError(msg)
if self.contains_edge(source_vertex, destination_vertex):
msg = (
"Incorrect input: The edge already exists between "
f"{source_vertex} and {destination_vertex}"
)
raise ValueError(msg)
# Get the indices of the corresponding vertices and set their edge value to 1.
u: int = self.vertex_to_index[source_vertex]
v: int = self.vertex_to_index[destination_vertex]
self.adj_matrix[u][v] = 1
if not self.directed:
self.adj_matrix[v][u] = 1
def remove_edge(self, source_vertex: T, destination_vertex: T) -> None:
"""
Removes the edge between the two vertices. If any given vertex
doesn't exist or the edge does not exist, a ValueError will be thrown.
"""
if not (
self.contains_vertex(source_vertex)
and self.contains_vertex(destination_vertex)
):
msg = (
f"Incorrect input: Either {source_vertex} or "
f"{destination_vertex} does not exist"
)
raise ValueError(msg)
if not self.contains_edge(source_vertex, destination_vertex):
msg = (
"Incorrect input: The edge does NOT exist between "
f"{source_vertex} and {destination_vertex}"
)
raise ValueError(msg)
# Get the indices of the corresponding vertices and set their edge value to 0.
u: int = self.vertex_to_index[source_vertex]
v: int = self.vertex_to_index[destination_vertex]
self.adj_matrix[u][v] = 0
if not self.directed:
self.adj_matrix[v][u] = 0
def add_vertex(self, vertex: T) -> None:
"""
Adds a vertex to the graph. If the given vertex already exists,
a ValueError will be thrown.
"""
if self.contains_vertex(vertex):
msg = f"Incorrect input: {vertex} already exists in this graph."
raise ValueError(msg)
# build column for vertex
for row in self.adj_matrix:
row.append(0)
# build row for vertex and update other data structures
self.adj_matrix.append([0] * (len(self.adj_matrix) + 1))
self.vertex_to_index[vertex] = len(self.adj_matrix) - 1
def remove_vertex(self, vertex: T) -> None:
"""
Removes the given vertex from the graph and deletes all incoming and
outgoing edges from the given vertex as well. If the given vertex
does not exist, a ValueError will be thrown.
"""
if not self.contains_vertex(vertex):
msg = f"Incorrect input: {vertex} does not exist in this graph."
raise ValueError(msg)
# first slide up the rows by deleting the row corresponding to
# the vertex being deleted.
start_index = self.vertex_to_index[vertex]
self.adj_matrix.pop(start_index)
# next, slide the columns to the left by deleting the values in
# the column corresponding to the vertex being deleted
for lst in self.adj_matrix:
lst.pop(start_index)
# final clean up
self.vertex_to_index.pop(vertex)
# decrement indices for vertices shifted by the deleted vertex in the adj matrix
for vertex in self.vertex_to_index:
if self.vertex_to_index[vertex] >= start_index:
self.vertex_to_index[vertex] = self.vertex_to_index[vertex] - 1
def contains_vertex(self, vertex: T) -> bool:
"""
Returns True if the graph contains the vertex, False otherwise.
"""
return vertex in self.vertex_to_index
def contains_edge(self, source_vertex: T, destination_vertex: T) -> bool:
"""
Returns True if the graph contains the edge from the source_vertex to the
destination_vertex, False otherwise. If any given vertex doesn't exist, a
ValueError will be thrown.
"""
if not (
self.contains_vertex(source_vertex)
and self.contains_vertex(destination_vertex)
):
msg = (
f"Incorrect input: Either {source_vertex} "
f"or {destination_vertex} does not exist."
)
raise ValueError(msg)
u = self.vertex_to_index[source_vertex]
v = self.vertex_to_index[destination_vertex]
return self.adj_matrix[u][v] == 1
def clear_graph(self) -> None:
"""
Clears all vertices and edges.
"""
self.vertex_to_index = {}
self.adj_matrix = []
def __repr__(self) -> str:
first = "Adj Matrix:\n" + pformat(self.adj_matrix)
second = "\nVertex to index mapping:\n" + pformat(self.vertex_to_index)
return first + second
class TestGraphMatrix(unittest.TestCase):
def __assert_graph_edge_exists_check(
self,
undirected_graph: GraphAdjacencyMatrix,
directed_graph: GraphAdjacencyMatrix,
edge: list[int],
) -> None:
self.assertTrue(undirected_graph.contains_edge(edge[0], edge[1]))
self.assertTrue(undirected_graph.contains_edge(edge[1], edge[0]))
self.assertTrue(directed_graph.contains_edge(edge[0], edge[1]))
def __assert_graph_edge_does_not_exist_check(
self,
undirected_graph: GraphAdjacencyMatrix,
directed_graph: GraphAdjacencyMatrix,
edge: list[int],
) -> None:
self.assertFalse(undirected_graph.contains_edge(edge[0], edge[1]))
self.assertFalse(undirected_graph.contains_edge(edge[1], edge[0]))
self.assertFalse(directed_graph.contains_edge(edge[0], edge[1]))
def __assert_graph_vertex_exists_check(
self,
undirected_graph: GraphAdjacencyMatrix,
directed_graph: GraphAdjacencyMatrix,
vertex: int,
) -> None:
self.assertTrue(undirected_graph.contains_vertex(vertex))
self.assertTrue(directed_graph.contains_vertex(vertex))
def __assert_graph_vertex_does_not_exist_check(
self,
undirected_graph: GraphAdjacencyMatrix,
directed_graph: GraphAdjacencyMatrix,
vertex: int,
) -> None:
self.assertFalse(undirected_graph.contains_vertex(vertex))
self.assertFalse(directed_graph.contains_vertex(vertex))
def __generate_random_edges(
self, vertices: list[int], edge_pick_count: int
) -> list[list[int]]:
self.assertTrue(edge_pick_count <= len(vertices))
random_source_vertices: list[int] = random.sample(
vertices[0 : int(len(vertices) / 2)], edge_pick_count
)
random_destination_vertices: list[int] = random.sample(
vertices[int(len(vertices) / 2) :], edge_pick_count
)
random_edges: list[list[int]] = []
for source in random_source_vertices:
for dest in random_destination_vertices:
random_edges.append([source, dest])
return random_edges
def __generate_graphs(
self, vertex_count: int, min_val: int, max_val: int, edge_pick_count: int
) -> tuple[GraphAdjacencyMatrix, GraphAdjacencyMatrix, list[int], list[list[int]]]:
if max_val - min_val + 1 < vertex_count:
raise ValueError(
"Will result in duplicate vertices. Either increase "
"range between min_val and max_val or decrease vertex count"
)
# generate graph input
random_vertices: list[int] = random.sample(
range(min_val, max_val + 1), vertex_count
)
random_edges: list[list[int]] = self.__generate_random_edges(
random_vertices, edge_pick_count
)
# build graphs
undirected_graph = GraphAdjacencyMatrix(
vertices=random_vertices, edges=random_edges, directed=False
)
directed_graph = GraphAdjacencyMatrix(
vertices=random_vertices, edges=random_edges, directed=True
)
return undirected_graph, directed_graph, random_vertices, random_edges
def test_init_check(self) -> None:
(
undirected_graph,
directed_graph,
random_vertices,
random_edges,
) = self.__generate_graphs(20, 0, 100, 4)
# test graph initialization with vertices and edges
for num in random_vertices:
self.__assert_graph_vertex_exists_check(
undirected_graph, directed_graph, num
)
for edge in random_edges:
self.__assert_graph_edge_exists_check(
undirected_graph, directed_graph, edge
)
self.assertFalse(undirected_graph.directed)
self.assertTrue(directed_graph.directed)
def test_contains_vertex(self) -> None:
random_vertices: list[int] = random.sample(range(101), 20)
# Build graphs WITHOUT edges
undirected_graph = GraphAdjacencyMatrix(
vertices=random_vertices, edges=[], directed=False
)
directed_graph = GraphAdjacencyMatrix(
vertices=random_vertices, edges=[], directed=True
)
# Test contains_vertex
for num in range(101):
self.assertEqual(
num in random_vertices, undirected_graph.contains_vertex(num)
)
self.assertEqual(
num in random_vertices, directed_graph.contains_vertex(num)
)
def test_add_vertices(self) -> None:
random_vertices: list[int] = random.sample(range(101), 20)
# build empty graphs
undirected_graph: GraphAdjacencyMatrix = GraphAdjacencyMatrix(
vertices=[], edges=[], directed=False
)
directed_graph: GraphAdjacencyMatrix = GraphAdjacencyMatrix(
vertices=[], edges=[], directed=True
)
# run add_vertex
for num in random_vertices:
undirected_graph.add_vertex(num)
for num in random_vertices:
directed_graph.add_vertex(num)
# test add_vertex worked
for num in random_vertices:
self.__assert_graph_vertex_exists_check(
undirected_graph, directed_graph, num
)
def test_remove_vertices(self) -> None:
random_vertices: list[int] = random.sample(range(101), 20)
# build graphs WITHOUT edges
undirected_graph = GraphAdjacencyMatrix(
vertices=random_vertices, edges=[], directed=False
)
directed_graph = GraphAdjacencyMatrix(
vertices=random_vertices, edges=[], directed=True
)
# test remove_vertex worked
for num in random_vertices:
self.__assert_graph_vertex_exists_check(
undirected_graph, directed_graph, num
)
undirected_graph.remove_vertex(num)
directed_graph.remove_vertex(num)
self.__assert_graph_vertex_does_not_exist_check(
undirected_graph, directed_graph, num
)
def test_add_and_remove_vertices_repeatedly(self) -> None:
random_vertices1: list[int] = random.sample(range(51), 20)
random_vertices2: list[int] = random.sample(range(51, 101), 20)
# build graphs WITHOUT edges
undirected_graph = GraphAdjacencyMatrix(
vertices=random_vertices1, edges=[], directed=False
)
directed_graph = GraphAdjacencyMatrix(
vertices=random_vertices1, edges=[], directed=True
)
# test adding and removing vertices
for i, _ in enumerate(random_vertices1):
undirected_graph.add_vertex(random_vertices2[i])
directed_graph.add_vertex(random_vertices2[i])
self.__assert_graph_vertex_exists_check(
undirected_graph, directed_graph, random_vertices2[i]
)
undirected_graph.remove_vertex(random_vertices1[i])
directed_graph.remove_vertex(random_vertices1[i])
self.__assert_graph_vertex_does_not_exist_check(
undirected_graph, directed_graph, random_vertices1[i]
)
# remove all vertices
for i, _ in enumerate(random_vertices1):
undirected_graph.remove_vertex(random_vertices2[i])
directed_graph.remove_vertex(random_vertices2[i])
self.__assert_graph_vertex_does_not_exist_check(
undirected_graph, directed_graph, random_vertices2[i]
)
def test_contains_edge(self) -> None:
# generate graphs and graph input
vertex_count = 20
(
undirected_graph,
directed_graph,
random_vertices,
random_edges,
) = self.__generate_graphs(vertex_count, 0, 100, 4)
# generate all possible edges for testing
all_possible_edges: list[list[int]] = []
for i in range(vertex_count - 1):
for j in range(i + 1, vertex_count):
all_possible_edges.append([random_vertices[i], random_vertices[j]])
all_possible_edges.append([random_vertices[j], random_vertices[i]])
# test contains_edge function
for edge in all_possible_edges:
if edge in random_edges:
self.__assert_graph_edge_exists_check(
undirected_graph, directed_graph, edge
)
elif [edge[1], edge[0]] in random_edges:
# since this edge exists for undirected but the reverse may
# not exist for directed
self.__assert_graph_edge_exists_check(
undirected_graph, directed_graph, [edge[1], edge[0]]
)
else:
self.__assert_graph_edge_does_not_exist_check(
undirected_graph, directed_graph, edge
)
def test_add_edge(self) -> None:
# generate graph input
random_vertices: list[int] = random.sample(range(101), 15)
random_edges: list[list[int]] = self.__generate_random_edges(random_vertices, 4)
# build graphs WITHOUT edges
undirected_graph = GraphAdjacencyMatrix(
vertices=random_vertices, edges=[], directed=False
)
directed_graph = GraphAdjacencyMatrix(
vertices=random_vertices, edges=[], directed=True
)
# run and test add_edge
for edge in random_edges:
undirected_graph.add_edge(edge[0], edge[1])
directed_graph.add_edge(edge[0], edge[1])
self.__assert_graph_edge_exists_check(
undirected_graph, directed_graph, edge
)
def test_remove_edge(self) -> None:
# generate graph input and graphs
(
undirected_graph,
directed_graph,
random_vertices,
random_edges,
) = self.__generate_graphs(20, 0, 100, 4)
# run and test remove_edge
for edge in random_edges:
self.__assert_graph_edge_exists_check(
undirected_graph, directed_graph, edge
)
undirected_graph.remove_edge(edge[0], edge[1])
directed_graph.remove_edge(edge[0], edge[1])
self.__assert_graph_edge_does_not_exist_check(
undirected_graph, directed_graph, edge
)
def test_add_and_remove_edges_repeatedly(self) -> None:
(
undirected_graph,
directed_graph,
random_vertices,
random_edges,
) = self.__generate_graphs(20, 0, 100, 4)
# make some more edge options!
more_random_edges: list[list[int]] = []
while len(more_random_edges) != len(random_edges):
edges: list[list[int]] = self.__generate_random_edges(random_vertices, 4)
for edge in edges:
if len(more_random_edges) == len(random_edges):
break
elif edge not in more_random_edges and edge not in random_edges:
more_random_edges.append(edge)
for i, _ in enumerate(random_edges):
undirected_graph.add_edge(more_random_edges[i][0], more_random_edges[i][1])
directed_graph.add_edge(more_random_edges[i][0], more_random_edges[i][1])
self.__assert_graph_edge_exists_check(
undirected_graph, directed_graph, more_random_edges[i]
)
undirected_graph.remove_edge(random_edges[i][0], random_edges[i][1])
directed_graph.remove_edge(random_edges[i][0], random_edges[i][1])
self.__assert_graph_edge_does_not_exist_check(
undirected_graph, directed_graph, random_edges[i]
)
def test_add_vertex_exception_check(self) -> None:
(
undirected_graph,
directed_graph,
random_vertices,
random_edges,
) = self.__generate_graphs(20, 0, 100, 4)
for vertex in random_vertices:
with self.assertRaises(ValueError):
undirected_graph.add_vertex(vertex)
with self.assertRaises(ValueError):
directed_graph.add_vertex(vertex)
def test_remove_vertex_exception_check(self) -> None:
(
undirected_graph,
directed_graph,
random_vertices,
random_edges,
) = self.__generate_graphs(20, 0, 100, 4)
for i in range(101):
if i not in random_vertices:
with self.assertRaises(ValueError):
undirected_graph.remove_vertex(i)
with self.assertRaises(ValueError):
directed_graph.remove_vertex(i)
def test_add_edge_exception_check(self) -> None:
(
undirected_graph,
directed_graph,
random_vertices,
random_edges,
) = self.__generate_graphs(20, 0, 100, 4)
for edge in random_edges:
with self.assertRaises(ValueError):
undirected_graph.add_edge(edge[0], edge[1])
with self.assertRaises(ValueError):
directed_graph.add_edge(edge[0], edge[1])
def test_remove_edge_exception_check(self) -> None:
(
undirected_graph,
directed_graph,
random_vertices,
random_edges,
) = self.__generate_graphs(20, 0, 100, 4)
more_random_edges: list[list[int]] = []
while len(more_random_edges) != len(random_edges):
edges: list[list[int]] = self.__generate_random_edges(random_vertices, 4)
for edge in edges:
if len(more_random_edges) == len(random_edges):
break
elif edge not in more_random_edges and edge not in random_edges:
more_random_edges.append(edge)
for edge in more_random_edges:
with self.assertRaises(ValueError):
undirected_graph.remove_edge(edge[0], edge[1])
with self.assertRaises(ValueError):
directed_graph.remove_edge(edge[0], edge[1])
def test_contains_edge_exception_check(self) -> None:
(
undirected_graph,
directed_graph,
random_vertices,
random_edges,
) = self.__generate_graphs(20, 0, 100, 4)
for vertex in random_vertices:
with self.assertRaises(ValueError):
undirected_graph.contains_edge(vertex, 102)
with self.assertRaises(ValueError):
directed_graph.contains_edge(vertex, 102)
with self.assertRaises(ValueError):
undirected_graph.contains_edge(103, 102)
with self.assertRaises(ValueError):
directed_graph.contains_edge(103, 102)
if __name__ == "__main__":
unittest.main()

View File

@ -1,24 +0,0 @@
class Graph:
def __init__(self, vertex):
self.vertex = vertex
self.graph = [[0] * vertex for i in range(vertex)]
def add_edge(self, u, v):
self.graph[u - 1][v - 1] = 1
self.graph[v - 1][u - 1] = 1
def show(self):
for i in self.graph:
for j in i:
print(j, end=" ")
print(" ")
g = Graph(100)
g.add_edge(1, 4)
g.add_edge(4, 2)
g.add_edge(4, 5)
g.add_edge(2, 5)
g.add_edge(5, 3)
g.show()

View File

@ -58,8 +58,8 @@ class Node:
The heuristic here is the Manhattan Distance
Could elaborate to offer more than one choice
"""
dy = abs(self.pos_x - self.goal_x)
dx = abs(self.pos_y - self.goal_y)
dx = abs(self.pos_x - self.goal_x)
dy = abs(self.pos_y - self.goal_y)
return dx + dy
def __lt__(self, other) -> bool:

0
graphs/tests/__init__.py Normal file
View File

View File

@ -0,0 +1,48 @@
"""
Calculate the minimum waiting time using a greedy algorithm.
reference: https://www.youtube.com/watch?v=Sf3eiO12eJs
For doctests run following command:
python -m doctest -v minimum_waiting_time.py
The minimum_waiting_time function uses a greedy algorithm to calculate the minimum
time for queries to complete. It sorts the list in non-decreasing order, calculates
the waiting time for each query by multiplying its position in the list with the
sum of all remaining query times, and returns the total waiting time. A doctest
ensures that the function produces the correct output.
"""
def minimum_waiting_time(queries: list[int]) -> int:
"""
This function takes a list of query times and returns the minimum waiting time
for all queries to be completed.
Args:
queries: A list of queries measured in picoseconds
Returns:
total_waiting_time: Minimum waiting time measured in picoseconds
Examples:
>>> minimum_waiting_time([3, 2, 1, 2, 6])
17
>>> minimum_waiting_time([3, 2, 1])
4
>>> minimum_waiting_time([1, 2, 3, 4])
10
>>> minimum_waiting_time([5, 5, 5, 5])
30
>>> minimum_waiting_time([])
0
"""
n = len(queries)
if n in (0, 1):
return 0
return sum(query * (n - i - 1) for i, query in enumerate(sorted(queries)))
if __name__ == "__main__":
import doctest
doctest.testmod()

View File

@ -0,0 +1,89 @@
"""
Calculate the rank of a matrix.
See: https://en.wikipedia.org/wiki/Rank_(linear_algebra)
"""
def rank_of_matrix(matrix: list[list[int | float]]) -> int:
"""
Finds the rank of a matrix.
Args:
matrix: The matrix as a list of lists.
Returns:
The rank of the matrix.
Example:
>>> matrix1 = [[1, 2, 3],
... [4, 5, 6],
... [7, 8, 9]]
>>> rank_of_matrix(matrix1)
2
>>> matrix2 = [[1, 0, 0],
... [0, 1, 0],
... [0, 0, 0]]
>>> rank_of_matrix(matrix2)
2
>>> matrix3 = [[1, 2, 3, 4],
... [5, 6, 7, 8],
... [9, 10, 11, 12]]
>>> rank_of_matrix(matrix3)
2
>>> rank_of_matrix([[2,3,-1,-1],
... [1,-1,-2,4],
... [3,1,3,-2],
... [6,3,0,-7]])
4
>>> rank_of_matrix([[2,1,-3,-6],
... [3,-3,1,2],
... [1,1,1,2]])
3
>>> rank_of_matrix([[2,-1,0],
... [1,3,4],
... [4,1,-3]])
3
>>> rank_of_matrix([[3,2,1],
... [-6,-4,-2]])
1
>>> rank_of_matrix([[],[]])
0
>>> rank_of_matrix([[1]])
1
>>> rank_of_matrix([[]])
0
"""
rows = len(matrix)
columns = len(matrix[0])
rank = min(rows, columns)
for row in range(rank):
# Check if diagonal element is not zero
if matrix[row][row] != 0:
# Eliminate all the elements below the diagonal
for col in range(row + 1, rows):
multiplier = matrix[col][row] / matrix[row][row]
for i in range(row, columns):
matrix[col][i] -= multiplier * matrix[row][i]
else:
# Find a non-zero diagonal element to swap rows
reduce = True
for i in range(row + 1, rows):
if matrix[i][row] != 0:
matrix[row], matrix[i] = matrix[i], matrix[row]
reduce = False
break
if reduce:
rank -= 1
for i in range(rows):
matrix[i][row] = matrix[i][rank]
# Reduce the row pointer by one to stay on the same row
row -= 1
return rank
if __name__ == "__main__":
import doctest
doctest.testmod()

View File

@ -31,16 +31,18 @@ def schur_complement(
shape_c = np.shape(mat_c)
if shape_a[0] != shape_b[0]:
raise ValueError(
f"Expected the same number of rows for A and B. \
Instead found A of size {shape_a} and B of size {shape_b}"
msg = (
"Expected the same number of rows for A and B. "
f"Instead found A of size {shape_a} and B of size {shape_b}"
)
raise ValueError(msg)
if shape_b[1] != shape_c[1]:
raise ValueError(
f"Expected the same number of columns for B and C. \
Instead found B of size {shape_b} and C of size {shape_c}"
msg = (
"Expected the same number of columns for B and C. "
f"Instead found B of size {shape_b} and C of size {shape_c}"
)
raise ValueError(msg)
a_inv = pseudo_inv
if a_inv is None:

View File

@ -0,0 +1,311 @@
"""
Python implementation of the simplex algorithm for solving linear programs in
tabular form with
- `>=`, `<=`, and `=` constraints and
- each variable `x1, x2, ...>= 0`.
See https://gist.github.com/imengus/f9619a568f7da5bc74eaf20169a24d98 for how to
convert linear programs to simplex tableaus, and the steps taken in the simplex
algorithm.
Resources:
https://en.wikipedia.org/wiki/Simplex_algorithm
https://tinyurl.com/simplex4beginners
"""
from typing import Any
import numpy as np
class Tableau:
"""Operate on simplex tableaus
>>> t = Tableau(np.array([[-1,-1,0,0,-1],[1,3,1,0,4],[3,1,0,1,4.]]), 2)
Traceback (most recent call last):
...
ValueError: RHS must be > 0
"""
def __init__(self, tableau: np.ndarray, n_vars: int) -> None:
# Check if RHS is negative
if np.any(tableau[:, -1], where=tableau[:, -1] < 0):
raise ValueError("RHS must be > 0")
self.tableau = tableau
self.n_rows, _ = tableau.shape
# Number of decision variables x1, x2, x3...
self.n_vars = n_vars
# Number of artificial variables to be minimised
self.n_art_vars = len(np.where(tableau[self.n_vars : -1] == -1)[0])
# 2 if there are >= or == constraints (nonstandard), 1 otherwise (std)
self.n_stages = (self.n_art_vars > 0) + 1
# Number of slack variables added to make inequalities into equalities
self.n_slack = self.n_rows - self.n_stages
# Objectives for each stage
self.objectives = ["max"]
# In two stage simplex, first minimise then maximise
if self.n_art_vars:
self.objectives.append("min")
self.col_titles = [""]
# Index of current pivot row and column
self.row_idx = None
self.col_idx = None
# Does objective row only contain (non)-negative values?
self.stop_iter = False
@staticmethod
def generate_col_titles(*args: int) -> list[str]:
"""Generate column titles for tableau of specific dimensions
>>> Tableau.generate_col_titles(2, 3, 1)
['x1', 'x2', 's1', 's2', 's3', 'a1', 'RHS']
>>> Tableau.generate_col_titles()
Traceback (most recent call last):
...
ValueError: Must provide n_vars, n_slack, and n_art_vars
>>> Tableau.generate_col_titles(-2, 3, 1)
Traceback (most recent call last):
...
ValueError: All arguments must be non-negative integers
"""
if len(args) != 3:
raise ValueError("Must provide n_vars, n_slack, and n_art_vars")
if not all(x >= 0 and isinstance(x, int) for x in args):
raise ValueError("All arguments must be non-negative integers")
# decision | slack | artificial
string_starts = ["x", "s", "a"]
titles = []
for i in range(3):
for j in range(args[i]):
titles.append(string_starts[i] + str(j + 1))
titles.append("RHS")
return titles
def find_pivot(self, tableau: np.ndarray) -> tuple[Any, Any]:
"""Finds the pivot row and column.
>>> t = Tableau(np.array([[-2,1,0,0,0], [3,1,1,0,6], [1,2,0,1,7.]]), 2)
>>> t.find_pivot(t.tableau)
(1, 0)
"""
objective = self.objectives[-1]
# Find entries of highest magnitude in objective rows
sign = (objective == "min") - (objective == "max")
col_idx = np.argmax(sign * tableau[0, : self.n_vars])
# Choice is only valid if below 0 for maximise, and above for minimise
if sign * self.tableau[0, col_idx] <= 0:
self.stop_iter = True
return 0, 0
# Pivot row is chosen as having the lowest quotient when elements of
# the pivot column divide the right-hand side
# Slice excluding the objective rows
s = slice(self.n_stages, self.n_rows)
# RHS
dividend = tableau[s, -1]
# Elements of pivot column within slice
divisor = tableau[s, col_idx]
# Array filled with nans
nans = np.full(self.n_rows - self.n_stages, np.nan)
# If element in pivot column is greater than zeron_stages, return
# quotient or nan otherwise
quotients = np.divide(dividend, divisor, out=nans, where=divisor > 0)
# Arg of minimum quotient excluding the nan values. n_stages is added
# to compensate for earlier exclusion of objective columns
row_idx = np.nanargmin(quotients) + self.n_stages
return row_idx, col_idx
def pivot(self, tableau: np.ndarray, row_idx: int, col_idx: int) -> np.ndarray:
"""Pivots on value on the intersection of pivot row and column.
>>> t = Tableau(np.array([[-2,-3,0,0,0],[1,3,1,0,4],[3,1,0,1,4.]]), 2)
>>> t.pivot(t.tableau, 1, 0).tolist()
... # doctest: +NORMALIZE_WHITESPACE
[[0.0, 3.0, 2.0, 0.0, 8.0],
[1.0, 3.0, 1.0, 0.0, 4.0],
[0.0, -8.0, -3.0, 1.0, -8.0]]
"""
# Avoid changes to original tableau
piv_row = tableau[row_idx].copy()
piv_val = piv_row[col_idx]
# Entry becomes 1
piv_row *= 1 / piv_val
# Variable in pivot column becomes basic, ie the only non-zero entry
for idx, coeff in enumerate(tableau[:, col_idx]):
tableau[idx] += -coeff * piv_row
tableau[row_idx] = piv_row
return tableau
def change_stage(self, tableau: np.ndarray) -> np.ndarray:
"""Exits first phase of the two-stage method by deleting artificial
rows and columns, or completes the algorithm if exiting the standard
case.
>>> t = Tableau(np.array([
... [3, 3, -1, -1, 0, 0, 4],
... [2, 1, 0, 0, 0, 0, 0.],
... [1, 2, -1, 0, 1, 0, 2],
... [2, 1, 0, -1, 0, 1, 2]
... ]), 2)
>>> t.change_stage(t.tableau).tolist()
... # doctest: +NORMALIZE_WHITESPACE
[[2.0, 1.0, 0.0, 0.0, 0.0, 0.0],
[1.0, 2.0, -1.0, 0.0, 1.0, 2.0],
[2.0, 1.0, 0.0, -1.0, 0.0, 2.0]]
"""
# Objective of original objective row remains
self.objectives.pop()
if not self.objectives:
return tableau
# Slice containing ids for artificial columns
s = slice(-self.n_art_vars - 1, -1)
# Delete the artificial variable columns
tableau = np.delete(tableau, s, axis=1)
# Delete the objective row of the first stage
tableau = np.delete(tableau, 0, axis=0)
self.n_stages = 1
self.n_rows -= 1
self.n_art_vars = 0
self.stop_iter = False
return tableau
def run_simplex(self) -> dict[Any, Any]:
"""Operate on tableau until objective function cannot be
improved further.
# Standard linear program:
Max: x1 + x2
ST: x1 + 3x2 <= 4
3x1 + x2 <= 4
>>> Tableau(np.array([[-1,-1,0,0,0],[1,3,1,0,4],[3,1,0,1,4.]]),
... 2).run_simplex()
{'P': 2.0, 'x1': 1.0, 'x2': 1.0}
# Optimal tableau input:
>>> Tableau(np.array([
... [0, 0, 0.25, 0.25, 2],
... [0, 1, 0.375, -0.125, 1],
... [1, 0, -0.125, 0.375, 1]
... ]), 2).run_simplex()
{'P': 2.0, 'x1': 1.0, 'x2': 1.0}
# Non-standard: >= constraints
Max: 2x1 + 3x2 + x3
ST: x1 + x2 + x3 <= 40
2x1 + x2 - x3 >= 10
- x2 + x3 >= 10
>>> Tableau(np.array([
... [2, 0, 0, 0, -1, -1, 0, 0, 20],
... [-2, -3, -1, 0, 0, 0, 0, 0, 0],
... [1, 1, 1, 1, 0, 0, 0, 0, 40],
... [2, 1, -1, 0, -1, 0, 1, 0, 10],
... [0, -1, 1, 0, 0, -1, 0, 1, 10.]
... ]), 3).run_simplex()
{'P': 70.0, 'x1': 10.0, 'x2': 10.0, 'x3': 20.0}
# Non standard: minimisation and equalities
Min: x1 + x2
ST: 2x1 + x2 = 12
6x1 + 5x2 = 40
>>> Tableau(np.array([
... [8, 6, 0, -1, 0, -1, 0, 0, 52],
... [1, 1, 0, 0, 0, 0, 0, 0, 0],
... [2, 1, 1, 0, 0, 0, 0, 0, 12],
... [2, 1, 0, -1, 0, 0, 1, 0, 12],
... [6, 5, 0, 0, 1, 0, 0, 0, 40],
... [6, 5, 0, 0, 0, -1, 0, 1, 40.]
... ]), 2).run_simplex()
{'P': 7.0, 'x1': 5.0, 'x2': 2.0}
"""
# Stop simplex algorithm from cycling.
for _ in range(100):
# Completion of each stage removes an objective. If both stages
# are complete, then no objectives are left
if not self.objectives:
self.col_titles = self.generate_col_titles(
self.n_vars, self.n_slack, self.n_art_vars
)
# Find the values of each variable at optimal solution
return self.interpret_tableau(self.tableau, self.col_titles)
row_idx, col_idx = self.find_pivot(self.tableau)
# If there are no more negative values in objective row
if self.stop_iter:
# Delete artificial variable columns and rows. Update attributes
self.tableau = self.change_stage(self.tableau)
else:
self.tableau = self.pivot(self.tableau, row_idx, col_idx)
return {}
def interpret_tableau(
self, tableau: np.ndarray, col_titles: list[str]
) -> dict[str, float]:
"""Given the final tableau, add the corresponding values of the basic
decision variables to the `output_dict`
>>> tableau = np.array([
... [0,0,0.875,0.375,5],
... [0,1,0.375,-0.125,1],
... [1,0,-0.125,0.375,1]
... ])
>>> t = Tableau(tableau, 2)
>>> t.interpret_tableau(tableau, ["x1", "x2", "s1", "s2", "RHS"])
{'P': 5.0, 'x1': 1.0, 'x2': 1.0}
"""
# P = RHS of final tableau
output_dict = {"P": abs(tableau[0, -1])}
for i in range(self.n_vars):
# Gives ids of nonzero entries in the ith column
nonzero = np.nonzero(tableau[:, i])
n_nonzero = len(nonzero[0])
# First entry in the nonzero ids
nonzero_rowidx = nonzero[0][0]
nonzero_val = tableau[nonzero_rowidx, i]
# If there is only one nonzero value in column, which is one
if n_nonzero == nonzero_val == 1:
rhs_val = tableau[nonzero_rowidx, -1]
output_dict[col_titles[i]] = rhs_val
# Check for basic variables
for title in col_titles:
# Don't add RHS or slack variables to output dict
if title[0] not in "R-s-a":
output_dict.setdefault(title, 0)
return output_dict
if __name__ == "__main__":
import doctest
doctest.testmod()

View File

@ -399,7 +399,7 @@ def main():
if input("Press any key to restart or 'q' for quit: ").strip().lower() == "q":
print("\n" + "GoodBye!".center(100, "-") + "\n")
break
system("clear" if name == "posix" else "cls") # noqa: S605
system("cls" if name == "nt" else "clear") # noqa: S605
if __name__ == "__main__":

View File

@ -1,14 +1,55 @@
"""
Locally weighted linear regression, also called local regression, is a type of
non-parametric linear regression that prioritizes data closest to a given
prediction point. The algorithm estimates the vector of model coefficients β
using weighted least squares regression:
β = (XᵀWX)¹(XᵀWy),
where X is the design matrix, y is the response vector, and W is the diagonal
weight matrix.
This implementation calculates wᵢ, the weight of the ith training sample, using
the Gaussian weight:
wᵢ = exp(-xᵢ - x²/(2τ²)),
where xᵢ is the ith training sample, x is the prediction point, τ is the
"bandwidth", and x is the Euclidean norm (also called the 2-norm or the
norm). The bandwidth τ controls how quickly the weight of a training sample
decreases as its distance from the prediction point increases. One can think of
the Gaussian weight as a bell curve centered around the prediction point: a
training sample is weighted lower if it's farther from the center, and τ
controls the spread of the bell curve.
Other types of locally weighted regression such as locally estimated scatterplot
smoothing (LOESS) typically use different weight functions.
References:
- https://en.wikipedia.org/wiki/Local_regression
- https://en.wikipedia.org/wiki/Weighted_least_squares
- https://cs229.stanford.edu/notes2022fall/main_notes.pdf
"""
import matplotlib.pyplot as plt
import numpy as np
def weighted_matrix(
point: np.array, training_data_x: np.array, bandwidth: float
) -> np.array:
def weight_matrix(point: np.ndarray, x_train: np.ndarray, tau: float) -> np.ndarray:
"""
Calculate the weight for every point in the data set.
point --> the x value at which we want to make predictions
>>> weighted_matrix(
Calculate the weight of every point in the training data around a given
prediction point
Args:
point: x-value at which the prediction is being made
x_train: ndarray of x-values for training
tau: bandwidth value, controls how quickly the weight of training values
decreases as the distance from the prediction point increases
Returns:
m x m weight matrix around the prediction point, where m is the size of
the training set
>>> weight_matrix(
... np.array([1., 1.]),
... np.array([[16.99, 10.34], [21.01,23.68], [24.59,25.69]]),
... 0.6
@ -17,25 +58,30 @@ def weighted_matrix(
[0.00000000e+000, 0.00000000e+000, 0.00000000e+000],
[0.00000000e+000, 0.00000000e+000, 0.00000000e+000]])
"""
m, _ = np.shape(training_data_x) # m is the number of training samples
weights = np.eye(m) # Initializing weights as identity matrix
# calculating weights for all training examples [x(i)'s]
m = len(x_train) # Number of training samples
weights = np.eye(m) # Initialize weights as identity matrix
for j in range(m):
diff = point - training_data_x[j]
weights[j, j] = np.exp(diff @ diff.T / (-2.0 * bandwidth**2))
diff = point - x_train[j]
weights[j, j] = np.exp(diff @ diff.T / (-2.0 * tau**2))
return weights
def local_weight(
point: np.array,
training_data_x: np.array,
training_data_y: np.array,
bandwidth: float,
) -> np.array:
point: np.ndarray, x_train: np.ndarray, y_train: np.ndarray, tau: float
) -> np.ndarray:
"""
Calculate the local weights using the weight_matrix function on training data.
Return the weighted matrix.
Calculate the local weights at a given prediction point using the weight
matrix for that point
Args:
point: x-value at which the prediction is being made
x_train: ndarray of x-values for training
y_train: ndarray of y-values for training
tau: bandwidth value, controls how quickly the weight of training values
decreases as the distance from the prediction point increases
Returns:
ndarray of local weights
>>> local_weight(
... np.array([1., 1.]),
... np.array([[16.99, 10.34], [21.01,23.68], [24.59,25.69]]),
@ -45,19 +91,28 @@ def local_weight(
array([[0.00873174],
[0.08272556]])
"""
weight = weighted_matrix(point, training_data_x, bandwidth)
w = np.linalg.inv(training_data_x.T @ (weight @ training_data_x)) @ (
training_data_x.T @ weight @ training_data_y.T
weight_mat = weight_matrix(point, x_train, tau)
weight = np.linalg.inv(x_train.T @ weight_mat @ x_train) @ (
x_train.T @ weight_mat @ y_train.T
)
return w
return weight
def local_weight_regression(
training_data_x: np.array, training_data_y: np.array, bandwidth: float
) -> np.array:
x_train: np.ndarray, y_train: np.ndarray, tau: float
) -> np.ndarray:
"""
Calculate predictions for each data point on axis
Calculate predictions for each point in the training data
Args:
x_train: ndarray of x-values for training
y_train: ndarray of y-values for training
tau: bandwidth value, controls how quickly the weight of training values
decreases as the distance from the prediction point increases
Returns:
ndarray of predictions
>>> local_weight_regression(
... np.array([[16.99, 10.34], [21.01, 23.68], [24.59, 25.69]]),
... np.array([[1.01, 1.66, 3.5]]),
@ -65,77 +120,57 @@ def local_weight_regression(
... )
array([1.07173261, 1.65970737, 3.50160179])
"""
m, _ = np.shape(training_data_x)
ypred = np.zeros(m)
y_pred = np.zeros(len(x_train)) # Initialize array of predictions
for i, item in enumerate(x_train):
y_pred[i] = item @ local_weight(item, x_train, y_train, tau)
for i, item in enumerate(training_data_x):
ypred[i] = item @ local_weight(
item, training_data_x, training_data_y, bandwidth
)
return ypred
return y_pred
def load_data(
dataset_name: str, cola_name: str, colb_name: str
) -> tuple[np.array, np.array, np.array, np.array]:
dataset_name: str, x_name: str, y_name: str
) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
"""
Load data from seaborn and split it into x and y points
>>> pass # No doctests, function is for demo purposes only
"""
import seaborn as sns
data = sns.load_dataset(dataset_name)
col_a = np.array(data[cola_name]) # total_bill
col_b = np.array(data[colb_name]) # tip
x_data = np.array(data[x_name])
y_data = np.array(data[y_name])
mcol_a = col_a.copy()
mcol_b = col_b.copy()
one = np.ones(len(y_data))
one = np.ones(np.shape(mcol_b)[0], dtype=int)
# pairing elements of one and x_data
x_train = np.column_stack((one, x_data))
# pairing elements of one and mcol_a
training_data_x = np.column_stack((one, mcol_a))
return training_data_x, mcol_b, col_a, col_b
def get_preds(training_data_x: np.array, mcol_b: np.array, tau: float) -> np.array:
"""
Get predictions with minimum error for each training data
>>> get_preds(
... np.array([[16.99, 10.34], [21.01, 23.68], [24.59, 25.69]]),
... np.array([[1.01, 1.66, 3.5]]),
... 0.6
... )
array([1.07173261, 1.65970737, 3.50160179])
"""
ypred = local_weight_regression(training_data_x, mcol_b, tau)
return ypred
return x_train, x_data, y_data
def plot_preds(
training_data_x: np.array,
predictions: np.array,
col_x: np.array,
col_y: np.array,
cola_name: str,
colb_name: str,
) -> plt.plot:
x_train: np.ndarray,
preds: np.ndarray,
x_data: np.ndarray,
y_data: np.ndarray,
x_name: str,
y_name: str,
) -> None:
"""
Plot predictions and display the graph
>>> pass # No doctests, function is for demo purposes only
"""
xsort = training_data_x.copy()
xsort.sort(axis=0)
plt.scatter(col_x, col_y, color="blue")
x_train_sorted = np.sort(x_train, axis=0)
plt.scatter(x_data, y_data, color="blue")
plt.plot(
xsort[:, 1],
predictions[training_data_x[:, 1].argsort(0)],
x_train_sorted[:, 1],
preds[x_train[:, 1].argsort(0)],
color="yellow",
linewidth=5,
)
plt.title("Local Weighted Regression")
plt.xlabel(cola_name)
plt.ylabel(colb_name)
plt.xlabel(x_name)
plt.ylabel(y_name)
plt.show()
@ -144,6 +179,7 @@ if __name__ == "__main__":
doctest.testmod()
training_data_x, mcol_b, col_a, col_b = load_data("tips", "total_bill", "tip")
predictions = get_preds(training_data_x, mcol_b, 0.5)
plot_preds(training_data_x, predictions, col_a, col_b, "total_bill", "tip")
# Demo with a dataset from the seaborn module
training_data_x, total_bill, tip = load_data("tips", "total_bill", "tip")
predictions = local_weight_regression(training_data_x, tip, 5)
plot_preds(training_data_x, predictions, total_bill, tip, "total_bill", "tip")

View File

@ -1,44 +0,0 @@
import pandas as pd
from matplotlib import pyplot as plt
from sklearn.linear_model import LinearRegression
# Splitting the dataset into the Training set and Test set
from sklearn.model_selection import train_test_split
# Fitting Polynomial Regression to the dataset
from sklearn.preprocessing import PolynomialFeatures
# Importing the dataset
dataset = pd.read_csv(
"https://s3.us-west-2.amazonaws.com/public.gamelab.fun/dataset/"
"position_salaries.csv"
)
X = dataset.iloc[:, 1:2].values
y = dataset.iloc[:, 2].values
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
poly_reg = PolynomialFeatures(degree=4)
X_poly = poly_reg.fit_transform(X)
pol_reg = LinearRegression()
pol_reg.fit(X_poly, y)
# Visualizing the Polymonial Regression results
def viz_polymonial():
plt.scatter(X, y, color="red")
plt.plot(X, pol_reg.predict(poly_reg.fit_transform(X)), color="blue")
plt.title("Truth or Bluff (Linear Regression)")
plt.xlabel("Position level")
plt.ylabel("Salary")
plt.show()
if __name__ == "__main__":
viz_polymonial()
# Predicting a new result with Polymonial Regression
pol_reg.predict(poly_reg.fit_transform([[5.5]]))
# output should be 132148.43750003

View File

@ -0,0 +1,213 @@
"""
Polynomial regression is a type of regression analysis that models the relationship
between a predictor x and the response y as an mth-degree polynomial:
y = β₀ + β₁x + β₂x² + ... + βₘxᵐ + ε
By treating x, , ..., xᵐ as distinct variables, we see that polynomial regression is a
special case of multiple linear regression. Therefore, we can use ordinary least squares
(OLS) estimation to estimate the vector of model parameters β = (β₀, β₁, β₂, ..., βₘ)
for polynomial regression:
β = (XᵀX)¹Xᵀy = Xy
where X is the design matrix, y is the response vector, and X denotes the MoorePenrose
pseudoinverse of X. In the case of polynomial regression, the design matrix is
|1 x₁ x₁² x₁ᵐ|
X = |1 x₂ x₂² x₂ᵐ|
| |
|1 xₙ xₙ² xₙᵐ|
In OLS estimation, inverting XᵀX to compute X can be very numerically unstable. This
implementation sidesteps this need to invert XᵀX by computing X using singular value
decomposition (SVD):
β = Uᵀy
where UΣVᵀ is an SVD of X.
References:
- https://en.wikipedia.org/wiki/Polynomial_regression
- https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse
- https://en.wikipedia.org/wiki/Numerical_methods_for_linear_least_squares
- https://en.wikipedia.org/wiki/Singular_value_decomposition
"""
import matplotlib.pyplot as plt
import numpy as np
class PolynomialRegression:
__slots__ = "degree", "params"
def __init__(self, degree: int) -> None:
"""
@raises ValueError: if the polynomial degree is negative
"""
if degree < 0:
raise ValueError("Polynomial degree must be non-negative")
self.degree = degree
self.params = None
@staticmethod
def _design_matrix(data: np.ndarray, degree: int) -> np.ndarray:
"""
Constructs a polynomial regression design matrix for the given input data. For
input data x = (x₁, x₂, ..., xₙ) and polynomial degree m, the design matrix is
the Vandermonde matrix
|1 x₁ x₁² x₁ᵐ|
X = |1 x₂ x₂² x₂ᵐ|
| |
|1 xₙ xₙ² xₙᵐ|
Reference: https://en.wikipedia.org/wiki/Vandermonde_matrix
@param data: the input predictor values x, either for model fitting or for
prediction
@param degree: the polynomial degree m
@returns: the Vandermonde matrix X (see above)
@raises ValueError: if input data is not N x 1
>>> x = np.array([0, 1, 2])
>>> PolynomialRegression._design_matrix(x, degree=0)
array([[1],
[1],
[1]])
>>> PolynomialRegression._design_matrix(x, degree=1)
array([[1, 0],
[1, 1],
[1, 2]])
>>> PolynomialRegression._design_matrix(x, degree=2)
array([[1, 0, 0],
[1, 1, 1],
[1, 2, 4]])
>>> PolynomialRegression._design_matrix(x, degree=3)
array([[1, 0, 0, 0],
[1, 1, 1, 1],
[1, 2, 4, 8]])
>>> PolynomialRegression._design_matrix(np.array([[0, 0], [0 , 0]]), degree=3)
Traceback (most recent call last):
...
ValueError: Data must have dimensions N x 1
"""
rows, *remaining = data.shape
if remaining:
raise ValueError("Data must have dimensions N x 1")
return np.vander(data, N=degree + 1, increasing=True)
def fit(self, x_train: np.ndarray, y_train: np.ndarray) -> None:
"""
Computes the polynomial regression model parameters using ordinary least squares
(OLS) estimation:
β = (XᵀX)¹Xᵀy = Xy
where X denotes the MoorePenrose pseudoinverse of the design matrix X. This
function computes X using singular value decomposition (SVD).
References:
- https://en.wikipedia.org/wiki/Moore%E2%80%93Penrose_inverse
- https://en.wikipedia.org/wiki/Singular_value_decomposition
- https://en.wikipedia.org/wiki/Multicollinearity
@param x_train: the predictor values x for model fitting
@param y_train: the response values y for model fitting
@raises ArithmeticError: if X isn't full rank, then XᵀX is singular and β
doesn't exist
>>> x = np.array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
>>> y = x**3 - 2 * x**2 + 3 * x - 5
>>> poly_reg = PolynomialRegression(degree=3)
>>> poly_reg.fit(x, y)
>>> poly_reg.params
array([-5., 3., -2., 1.])
>>> poly_reg = PolynomialRegression(degree=20)
>>> poly_reg.fit(x, y)
Traceback (most recent call last):
...
ArithmeticError: Design matrix is not full rank, can't compute coefficients
Make sure errors don't grow too large:
>>> coefs = np.array([-250, 50, -2, 36, 20, -12, 10, 2, -1, -15, 1])
>>> y = PolynomialRegression._design_matrix(x, len(coefs) - 1) @ coefs
>>> poly_reg = PolynomialRegression(degree=len(coefs) - 1)
>>> poly_reg.fit(x, y)
>>> np.allclose(poly_reg.params, coefs, atol=10e-3)
True
"""
X = PolynomialRegression._design_matrix(x_train, self.degree) # noqa: N806
_, cols = X.shape
if np.linalg.matrix_rank(X) < cols:
raise ArithmeticError(
"Design matrix is not full rank, can't compute coefficients"
)
# np.linalg.pinv() computes the MoorePenrose pseudoinverse using SVD
self.params = np.linalg.pinv(X) @ y_train
def predict(self, data: np.ndarray) -> np.ndarray:
"""
Computes the predicted response values y for the given input data by
constructing the design matrix X and evaluating y = .
@param data: the predictor values x for prediction
@returns: the predicted response values y =
@raises ArithmeticError: if this function is called before the model
parameters are fit
>>> x = np.array([0, 1, 2, 3, 4])
>>> y = x**3 - 2 * x**2 + 3 * x - 5
>>> poly_reg = PolynomialRegression(degree=3)
>>> poly_reg.fit(x, y)
>>> poly_reg.predict(np.array([-1]))
array([-11.])
>>> poly_reg.predict(np.array([-2]))
array([-27.])
>>> poly_reg.predict(np.array([6]))
array([157.])
>>> PolynomialRegression(degree=3).predict(x)
Traceback (most recent call last):
...
ArithmeticError: Predictor hasn't been fit yet
"""
if self.params is None:
raise ArithmeticError("Predictor hasn't been fit yet")
return PolynomialRegression._design_matrix(data, self.degree) @ self.params
def main() -> None:
"""
Fit a polynomial regression model to predict fuel efficiency using seaborn's mpg
dataset
>>> pass # Placeholder, function is only for demo purposes
"""
import seaborn as sns
mpg_data = sns.load_dataset("mpg")
poly_reg = PolynomialRegression(degree=2)
poly_reg.fit(mpg_data.weight, mpg_data.mpg)
weight_sorted = np.sort(mpg_data.weight)
predictions = poly_reg.predict(weight_sorted)
plt.scatter(mpg_data.weight, mpg_data.mpg, color="gray", alpha=0.5)
plt.plot(weight_sorted, predictions, color="red", linewidth=3)
plt.title("Predicting Fuel Efficiency Using Polynomial Regression")
plt.xlabel("Weight (lbs)")
plt.ylabel("Fuel Efficiency (mpg)")
plt.show()
if __name__ == "__main__":
import doctest
doctest.testmod()
main()

View File

@ -97,26 +97,29 @@ def similarity_search(
"""
if dataset.ndim != value_array.ndim:
raise ValueError(
f"Wrong input data's dimensions... dataset : {dataset.ndim}, "
f"value_array : {value_array.ndim}"
msg = (
"Wrong input data's dimensions... "
f"dataset : {dataset.ndim}, value_array : {value_array.ndim}"
)
raise ValueError(msg)
try:
if dataset.shape[1] != value_array.shape[1]:
raise ValueError(
f"Wrong input data's shape... dataset : {dataset.shape[1]}, "
f"value_array : {value_array.shape[1]}"
msg = (
"Wrong input data's shape... "
f"dataset : {dataset.shape[1]}, value_array : {value_array.shape[1]}"
)
raise ValueError(msg)
except IndexError:
if dataset.ndim != value_array.ndim:
raise TypeError("Wrong shape")
if dataset.dtype != value_array.dtype:
raise TypeError(
f"Input data have different datatype... dataset : {dataset.dtype}, "
f"value_array : {value_array.dtype}"
msg = (
"Input data have different datatype... "
f"dataset : {dataset.dtype}, value_array : {value_array.dtype}"
)
raise TypeError(msg)
answer = []

View File

@ -74,7 +74,8 @@ class SVC:
# sklear: def_gamma = 1/(n_features * X.var()) (wiki)
# previously it was 1/(n_features)
else:
raise ValueError(f"Unknown kernel: {kernel}")
msg = f"Unknown kernel: {kernel}"
raise ValueError(msg)
# kernels
def __linear(self, vector1: ndarray, vector2: ndarray) -> float:

View File

@ -1,149 +0,0 @@
from __future__ import annotations
def n31(a: int) -> tuple[list[int], int]:
"""
Returns the Collatz sequence and its length of any positive integer.
>>> n31(4)
([4, 2, 1], 3)
"""
if not isinstance(a, int):
raise TypeError(f"Must be int, not {type(a).__name__}")
if a < 1:
raise ValueError(f"Given integer must be positive, not {a}")
path = [a]
while a != 1:
if a % 2 == 0:
a //= 2
else:
a = 3 * a + 1
path.append(a)
return path, len(path)
def test_n31():
"""
>>> test_n31()
"""
assert n31(4) == ([4, 2, 1], 3)
assert n31(11) == ([11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1], 15)
assert n31(31) == (
[
31,
94,
47,
142,
71,
214,
107,
322,
161,
484,
242,
121,
364,
182,
91,
274,
137,
412,
206,
103,
310,
155,
466,
233,
700,
350,
175,
526,
263,
790,
395,
1186,
593,
1780,
890,
445,
1336,
668,
334,
167,
502,
251,
754,
377,
1132,
566,
283,
850,
425,
1276,
638,
319,
958,
479,
1438,
719,
2158,
1079,
3238,
1619,
4858,
2429,
7288,
3644,
1822,
911,
2734,
1367,
4102,
2051,
6154,
3077,
9232,
4616,
2308,
1154,
577,
1732,
866,
433,
1300,
650,
325,
976,
488,
244,
122,
61,
184,
92,
46,
23,
70,
35,
106,
53,
160,
80,
40,
20,
10,
5,
16,
8,
4,
2,
1,
],
107,
)
if __name__ == "__main__":
num = 4
path, length = n31(num)
print(f"The Collatz sequence of {num} took {length} steps. \nPath: {path}")

View File

@ -40,7 +40,8 @@ def is_automorphic_number(number: int) -> bool:
TypeError: Input value of [number=5.0] must be an integer
"""
if not isinstance(number, int):
raise TypeError(f"Input value of [number={number}] must be an integer")
msg = f"Input value of [number={number}] must be an integer"
raise TypeError(msg)
if number < 0:
return False
number_square = number * number

View File

@ -31,10 +31,12 @@ def catalan(number: int) -> int:
"""
if not isinstance(number, int):
raise TypeError(f"Input value of [number={number}] must be an integer")
msg = f"Input value of [number={number}] must be an integer"
raise TypeError(msg)
if number < 1:
raise ValueError(f"Input value of [number={number}] must be > 0")
msg = f"Input value of [number={number}] must be > 0"
raise ValueError(msg)
current_number = 1

View File

@ -1,43 +1,66 @@
"""
The Collatz conjecture is a famous unsolved problem in mathematics. Given a starting
positive integer, define the following sequence:
- If the current term n is even, then the next term is n/2.
- If the current term n is odd, then the next term is 3n + 1.
The conjecture claims that this sequence will always reach 1 for any starting number.
Other names for this problem include the 3n + 1 problem, the Ulam conjecture, Kakutani's
problem, the Thwaites conjecture, Hasse's algorithm, the Syracuse problem, and the
hailstone sequence.
Reference: https://en.wikipedia.org/wiki/Collatz_conjecture
"""
from __future__ import annotations
from collections.abc import Generator
def collatz_sequence(n: int) -> list[int]:
def collatz_sequence(n: int) -> Generator[int, None, None]:
"""
Collatz conjecture: start with any positive integer n. The next term is
obtained as follows:
If n term is even, the next term is: n / 2 .
If n is odd, the next term is: 3 * n + 1.
The conjecture states the sequence will always reach 1 for any starting value n.
Example:
>>> collatz_sequence(2.1)
Generate the Collatz sequence starting at n.
>>> tuple(collatz_sequence(2.1))
Traceback (most recent call last):
...
Exception: Sequence only defined for natural numbers
>>> collatz_sequence(0)
Exception: Sequence only defined for positive integers
>>> tuple(collatz_sequence(0))
Traceback (most recent call last):
...
Exception: Sequence only defined for natural numbers
>>> collatz_sequence(43) # doctest: +NORMALIZE_WHITESPACE
[43, 130, 65, 196, 98, 49, 148, 74, 37, 112, 56, 28, 14, 7,
22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1]
Exception: Sequence only defined for positive integers
>>> tuple(collatz_sequence(4))
(4, 2, 1)
>>> tuple(collatz_sequence(11))
(11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1)
>>> tuple(collatz_sequence(31)) # doctest: +NORMALIZE_WHITESPACE
(31, 94, 47, 142, 71, 214, 107, 322, 161, 484, 242, 121, 364, 182, 91, 274, 137,
412, 206, 103, 310, 155, 466, 233, 700, 350, 175, 526, 263, 790, 395, 1186, 593,
1780, 890, 445, 1336, 668, 334, 167, 502, 251, 754, 377, 1132, 566, 283, 850, 425,
1276, 638, 319, 958, 479, 1438, 719, 2158, 1079, 3238, 1619, 4858, 2429, 7288, 3644,
1822, 911, 2734, 1367, 4102, 2051, 6154, 3077, 9232, 4616, 2308, 1154, 577, 1732,
866, 433, 1300, 650, 325, 976, 488, 244, 122, 61, 184, 92, 46, 23, 70, 35, 106, 53,
160, 80, 40, 20, 10, 5, 16, 8, 4, 2, 1)
>>> tuple(collatz_sequence(43)) # doctest: +NORMALIZE_WHITESPACE
(43, 130, 65, 196, 98, 49, 148, 74, 37, 112, 56, 28, 14, 7, 22, 11, 34, 17, 52, 26,
13, 40, 20, 10, 5, 16, 8, 4, 2, 1)
"""
if not isinstance(n, int) or n < 1:
raise Exception("Sequence only defined for natural numbers")
raise Exception("Sequence only defined for positive integers")
sequence = [n]
yield n
while n != 1:
n = 3 * n + 1 if n & 1 else n // 2
sequence.append(n)
return sequence
if n % 2 == 0:
n //= 2
else:
n = 3 * n + 1
yield n
def main():
n = 43
sequence = collatz_sequence(n)
n = int(input("Your number: "))
sequence = tuple(collatz_sequence(n))
print(sequence)
print(f"collatz sequence from {n} took {len(sequence)} steps.")
print(f"Collatz sequence from {n} took {len(sequence)} steps.")
if __name__ == "__main__":

View File

@ -0,0 +1,141 @@
from math import factorial
"""
https://en.wikipedia.org/wiki/Automatic_differentiation#Automatic_differentiation_using_dual_numbers
https://blog.jliszka.org/2013/10/24/exact-numeric-nth-derivatives.html
Note this only works for basic functions, f(x) where the power of x is positive.
"""
class Dual:
def __init__(self, real, rank):
self.real = real
if isinstance(rank, int):
self.duals = [1] * rank
else:
self.duals = rank
def __repr__(self):
return (
f"{self.real}+"
f"{'+'.join(str(dual)+'E'+str(n+1)for n,dual in enumerate(self.duals))}"
)
def reduce(self):
cur = self.duals.copy()
while cur[-1] == 0:
cur.pop(-1)
return Dual(self.real, cur)
def __add__(self, other):
if not isinstance(other, Dual):
return Dual(self.real + other, self.duals)
s_dual = self.duals.copy()
o_dual = other.duals.copy()
if len(s_dual) > len(o_dual):
o_dual.extend([1] * (len(s_dual) - len(o_dual)))
elif len(s_dual) < len(o_dual):
s_dual.extend([1] * (len(o_dual) - len(s_dual)))
new_duals = []
for i in range(len(s_dual)):
new_duals.append(s_dual[i] + o_dual[i])
return Dual(self.real + other.real, new_duals)
__radd__ = __add__
def __sub__(self, other):
return self + other * -1
def __mul__(self, other):
if not isinstance(other, Dual):
new_duals = []
for i in self.duals:
new_duals.append(i * other)
return Dual(self.real * other, new_duals)
new_duals = [0] * (len(self.duals) + len(other.duals) + 1)
for i, item in enumerate(self.duals):
for j, jtem in enumerate(other.duals):
new_duals[i + j + 1] += item * jtem
for k in range(len(self.duals)):
new_duals[k] += self.duals[k] * other.real
for index in range(len(other.duals)):
new_duals[index] += other.duals[index] * self.real
return Dual(self.real * other.real, new_duals)
__rmul__ = __mul__
def __truediv__(self, other):
if not isinstance(other, Dual):
new_duals = []
for i in self.duals:
new_duals.append(i / other)
return Dual(self.real / other, new_duals)
raise ValueError
def __floordiv__(self, other):
if not isinstance(other, Dual):
new_duals = []
for i in self.duals:
new_duals.append(i // other)
return Dual(self.real // other, new_duals)
raise ValueError
def __pow__(self, n):
if n < 0 or isinstance(n, float):
raise ValueError("power must be a positive integer")
if n == 0:
return 1
if n == 1:
return self
x = self
for _ in range(n - 1):
x *= self
return x
def differentiate(func, position, order):
"""
>>> differentiate(lambda x: x**2, 2, 2)
2
>>> differentiate(lambda x: x**2 * x**4, 9, 2)
196830
>>> differentiate(lambda y: 0.5 * (y + 3) ** 6, 3.5, 4)
7605.0
>>> differentiate(lambda y: y ** 2, 4, 3)
0
>>> differentiate(8, 8, 8)
Traceback (most recent call last):
...
ValueError: differentiate() requires a function as input for func
>>> differentiate(lambda x: x **2, "", 1)
Traceback (most recent call last):
...
ValueError: differentiate() requires a float as input for position
>>> differentiate(lambda x: x**2, 3, "")
Traceback (most recent call last):
...
ValueError: differentiate() requires an int as input for order
"""
if not callable(func):
raise ValueError("differentiate() requires a function as input for func")
if not isinstance(position, (float, int)):
raise ValueError("differentiate() requires a float as input for position")
if not isinstance(order, int):
raise ValueError("differentiate() requires an int as input for order")
d = Dual(position, 1)
result = func(d)
if order == 0:
return result.real
return result.duals[order - 1] * factorial(order)
if __name__ == "__main__":
import doctest
doctest.testmod()
def f(y):
return y**2 * y**4
print(differentiate(f, 9, 2))

View File

@ -1,12 +1,12 @@
from __future__ import annotations
import typing
from collections.abc import Iterable
from typing import Union
import numpy as np
Vector = Union[Iterable[float], Iterable[int], np.ndarray]
VectorOut = Union[np.float64, int, float]
Vector = typing.Union[Iterable[float], Iterable[int], np.ndarray] # noqa: UP007
VectorOut = typing.Union[np.float64, int, float] # noqa: UP007
def euclidean_distance(vector_1: Vector, vector_2: Vector) -> VectorOut:

View File

@ -55,7 +55,7 @@ def factorial_recursive(n: int) -> int:
raise ValueError("factorial() only accepts integral values")
if n < 0:
raise ValueError("factorial() not defined for negative values")
return 1 if n == 0 or n == 1 else n * factorial(n - 1)
return 1 if n in {0, 1} else n * factorial(n - 1)
if __name__ == "__main__":

View File

@ -36,7 +36,8 @@ def hexagonal(number: int) -> int:
TypeError: Input value of [number=11.0] must be an integer
"""
if not isinstance(number, int):
raise TypeError(f"Input value of [number={number}] must be an integer")
msg = f"Input value of [number={number}] must be an integer"
raise TypeError(msg)
if number < 1:
raise ValueError("Input must be a positive integer")
return number * (2 * number - 1)

View File

@ -0,0 +1,34 @@
def is_int_palindrome(num: int) -> bool:
"""
Returns whether `num` is a palindrome or not
(see for reference https://en.wikipedia.org/wiki/Palindromic_number).
>>> is_int_palindrome(-121)
False
>>> is_int_palindrome(0)
True
>>> is_int_palindrome(10)
False
>>> is_int_palindrome(11)
True
>>> is_int_palindrome(101)
True
>>> is_int_palindrome(120)
False
"""
if num < 0:
return False
num_copy: int = num
rev_num: int = 0
while num > 0:
rev_num = rev_num * 10 + (num % 10)
num //= 10
return num_copy == rev_num
if __name__ == "__main__":
import doctest
doctest.testmod()

Some files were not shown because too many files have changed in this diff Show More