mirror of
https://github.com/TheAlgorithms/Python.git
synced 2025-01-18 16:27:02 +00:00
Fermat's little theorem (#847)
* Fix typo * Add fermat's little theorem * Update fermat_little_theorem.py * Fix comments * Add Wikipedia reference
This commit is contained in:
parent
dd62f1b802
commit
fc95e7a91a
30
maths/fermat_little_theorem.py
Normal file
30
maths/fermat_little_theorem.py
Normal file
|
@ -0,0 +1,30 @@
|
|||
# Python program to show the usage of Fermat's little theorem in a division
|
||||
# According to Fermat's little theorem, (a / b) mod p always equals a * (b ^ (p - 2)) mod p
|
||||
# Here we assume that p is a prime number, b divides a, and p doesn't divide b
|
||||
# Wikipedia reference: https://en.wikipedia.org/wiki/Fermat%27s_little_theorem
|
||||
|
||||
|
||||
def binary_exponentiation(a, n, mod):
|
||||
|
||||
if (n == 0):
|
||||
return 1
|
||||
|
||||
elif (n % 2 == 1):
|
||||
return (binary_exponentiation(a, n - 1, mod) * a) % mod
|
||||
|
||||
else:
|
||||
b = binary_exponentiation(a, n / 2, mod)
|
||||
return (b * b) % mod
|
||||
|
||||
|
||||
# a prime number
|
||||
p = 701
|
||||
|
||||
a = 1000000000
|
||||
b = 10
|
||||
|
||||
# using binary exponentiation function, O(log(p)):
|
||||
print((a / b) % p == (a * binary_exponentiation(b, p - 2, p)) % p)
|
||||
|
||||
# using Python operators:
|
||||
print((a / b) % p == (a * b ** (p - 2)) % p)
|
Loading…
Reference in New Issue
Block a user