mish added

This commit is contained in:
Mitra-babu 2023-05-15 01:24:10 +05:30
parent ba0f68b923
commit fcab387a8f
2 changed files with 48 additions and 39 deletions

View File

@ -0,0 +1,48 @@
"""
Implements the Mish activation functions.
The function takes a vector of K real numbers input and then
applies the Mish function, x*tanh(softplus(x) to each element of the vector.
Script inspired from its corresponding Wikipedia article
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
The proposed paper link is provided below.
https://arxiv.org/abs/1908.08681
"""
import numpy as np
def mish_activation(vector: np.ndarray) -> np.ndarray:
"""
Implements the Mish function
Parameters:
vector: np.array
Returns:
Mish (np.array): The input numpy array after applying tanh.
mathematically, mish = x * tanh(softplus(x) where
softplus = ln(1+e^(x)) and tanh = (e^x - e^(-x))/(e^x + e^(-x))
so, mish can be written as x * (2/(1+e^(-2 * softplus))-1
Examples:
>>> mish_activation(np.array([1,5,6,-0.67]))
array([ 0.86509839, 8.99955208, 10.99992663, -1.93211787])
>>> mish_activation(np.array([8,2,-0.98,13]))
array([14.9999982 , 2.94395896, -2.28214659, 25. ])
"""
soft_plus = np.log(np.exp(vector) + 1)
return vector * (2 / (1 + np.exp(-2 * soft_plus))) - 1
if __name__ == "__main__":
import doctest
doctest.testmod()

View File

@ -1,39 +0,0 @@
"""
Implements the Sigmoid Linear Unit or SiLU function
also known as Swiss functions.
The function takes a vector of K real numbers and then
applies the SiLU function to each element of the vector.
Script inspired from its corresponding Wikipedia article
https://en.wikipedia.org/wiki/Rectifier_(neural_networks)
"""
import numpy as np
def sigmoid_linear_unit(vector: np.ndarray) -> np.ndarray:
"""
Implements the SiLU activation function.
Parameters:
vector: the array containing input of SiLU activation
return:
The input numpy array after applying SiLU.
Mathematically, f(x) = x * 1/1+e^(-x)
Examples:
>>> sigmoid_linear_unit(vector=np.array([2.3,0.6,-2,-3.8]))
array([ 2.09041719, 0.38739378, -0.23840584, -0.08314883])
>>> sigmoid_linear_unit(vector=np.array([-9.2,-0.3,0.45,-4.56]))
array([-0.00092947, -0.12766724, 0.27478766, -0.04721304])
"""
return vector / (1 + np.exp(-vector))
if __name__ == "__main__":
import doctest
doctest.testmod()