mirror of
https://github.com/TheAlgorithms/Python.git
synced 2024-11-27 15:01:08 +00:00
Reenable files when TensorFlow supports the current Python (#11318)
* Remove python_version < '3.12' for tensorflow * Reenable dynamic_programming/k_means_clustering_tensorflow.py * updating DIRECTORY.md * Try to fix ruff * Try to fix ruff * Try to fix ruff * Try to fix ruff * Try to fix ruff * Reenable machine_learning/lstm/lstm_prediction.py * updating DIRECTORY.md * Try to fix ruff * Reenable computer_vision/cnn_classification.py * updating DIRECTORY.md * Reenable neural_network/input_data.py * updating DIRECTORY.md * Try to fix ruff * Try to fix ruff * Try to fix mypy * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Try to fix ruff * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci --------- Co-authored-by: MaximSmolskiy <MaximSmolskiy@users.noreply.github.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
This commit is contained in:
parent
c6ca1942e1
commit
fd27953d44
|
@ -134,6 +134,7 @@
|
||||||
* [Run Length Encoding](compression/run_length_encoding.py)
|
* [Run Length Encoding](compression/run_length_encoding.py)
|
||||||
|
|
||||||
## Computer Vision
|
## Computer Vision
|
||||||
|
* [Cnn Classification](computer_vision/cnn_classification.py)
|
||||||
* [Flip Augmentation](computer_vision/flip_augmentation.py)
|
* [Flip Augmentation](computer_vision/flip_augmentation.py)
|
||||||
* [Haralick Descriptors](computer_vision/haralick_descriptors.py)
|
* [Haralick Descriptors](computer_vision/haralick_descriptors.py)
|
||||||
* [Harris Corner](computer_vision/harris_corner.py)
|
* [Harris Corner](computer_vision/harris_corner.py)
|
||||||
|
@ -344,6 +345,7 @@
|
||||||
* [Floyd Warshall](dynamic_programming/floyd_warshall.py)
|
* [Floyd Warshall](dynamic_programming/floyd_warshall.py)
|
||||||
* [Integer Partition](dynamic_programming/integer_partition.py)
|
* [Integer Partition](dynamic_programming/integer_partition.py)
|
||||||
* [Iterating Through Submasks](dynamic_programming/iterating_through_submasks.py)
|
* [Iterating Through Submasks](dynamic_programming/iterating_through_submasks.py)
|
||||||
|
* [K Means Clustering Tensorflow](dynamic_programming/k_means_clustering_tensorflow.py)
|
||||||
* [Knapsack](dynamic_programming/knapsack.py)
|
* [Knapsack](dynamic_programming/knapsack.py)
|
||||||
* [Largest Divisible Subset](dynamic_programming/largest_divisible_subset.py)
|
* [Largest Divisible Subset](dynamic_programming/largest_divisible_subset.py)
|
||||||
* [Longest Common Subsequence](dynamic_programming/longest_common_subsequence.py)
|
* [Longest Common Subsequence](dynamic_programming/longest_common_subsequence.py)
|
||||||
|
@ -571,6 +573,8 @@
|
||||||
* [Local Weighted Learning](machine_learning/local_weighted_learning/local_weighted_learning.py)
|
* [Local Weighted Learning](machine_learning/local_weighted_learning/local_weighted_learning.py)
|
||||||
* [Logistic Regression](machine_learning/logistic_regression.py)
|
* [Logistic Regression](machine_learning/logistic_regression.py)
|
||||||
* [Loss Functions](machine_learning/loss_functions.py)
|
* [Loss Functions](machine_learning/loss_functions.py)
|
||||||
|
* Lstm
|
||||||
|
* [Lstm Prediction](machine_learning/lstm/lstm_prediction.py)
|
||||||
* [Mfcc](machine_learning/mfcc.py)
|
* [Mfcc](machine_learning/mfcc.py)
|
||||||
* [Multilayer Perceptron Classifier](machine_learning/multilayer_perceptron_classifier.py)
|
* [Multilayer Perceptron Classifier](machine_learning/multilayer_perceptron_classifier.py)
|
||||||
* [Polynomial Regression](machine_learning/polynomial_regression.py)
|
* [Polynomial Regression](machine_learning/polynomial_regression.py)
|
||||||
|
@ -801,6 +805,7 @@
|
||||||
* [Swish](neural_network/activation_functions/swish.py)
|
* [Swish](neural_network/activation_functions/swish.py)
|
||||||
* [Back Propagation Neural Network](neural_network/back_propagation_neural_network.py)
|
* [Back Propagation Neural Network](neural_network/back_propagation_neural_network.py)
|
||||||
* [Convolution Neural Network](neural_network/convolution_neural_network.py)
|
* [Convolution Neural Network](neural_network/convolution_neural_network.py)
|
||||||
|
* [Input Data](neural_network/input_data.py)
|
||||||
* [Simple Neural Network](neural_network/simple_neural_network.py)
|
* [Simple Neural Network](neural_network/simple_neural_network.py)
|
||||||
|
|
||||||
## Other
|
## Other
|
||||||
|
|
|
@ -76,11 +76,9 @@ def encrypt_and_write_to_file(
|
||||||
key_size, n, e = read_key_file(key_filename)
|
key_size, n, e = read_key_file(key_filename)
|
||||||
if key_size < block_size * 8:
|
if key_size < block_size * 8:
|
||||||
sys.exit(
|
sys.exit(
|
||||||
"ERROR: Block size is {} bits and key size is {} bits. The RSA cipher "
|
f"ERROR: Block size is {block_size * 8} bits and key size is {key_size} "
|
||||||
"requires the block size to be equal to or greater than the key size. "
|
"bits. The RSA cipher requires the block size to be equal to or greater "
|
||||||
"Either decrease the block size or use different keys.".format(
|
"than the key size. Either decrease the block size or use different keys."
|
||||||
block_size * 8, key_size
|
|
||||||
)
|
|
||||||
)
|
)
|
||||||
|
|
||||||
encrypted_blocks = [str(i) for i in encrypt_message(message, (n, e), block_size)]
|
encrypted_blocks = [str(i) for i in encrypt_message(message, (n, e), block_size)]
|
||||||
|
@ -102,11 +100,10 @@ def read_from_file_and_decrypt(message_filename: str, key_filename: str) -> str:
|
||||||
|
|
||||||
if key_size < block_size * 8:
|
if key_size < block_size * 8:
|
||||||
sys.exit(
|
sys.exit(
|
||||||
"ERROR: Block size is {} bits and key size is {} bits. The RSA cipher "
|
f"ERROR: Block size is {block_size * 8} bits and key size is {key_size} "
|
||||||
"requires the block size to be equal to or greater than the key size. "
|
"bits. The RSA cipher requires the block size to be equal to or greater "
|
||||||
"Did you specify the correct key file and encrypted file?".format(
|
"than the key size. Did you specify the correct key file and encrypted "
|
||||||
block_size * 8, key_size
|
"file?"
|
||||||
)
|
|
||||||
)
|
)
|
||||||
|
|
||||||
encrypted_blocks = []
|
encrypted_blocks = []
|
||||||
|
|
|
@ -17,11 +17,11 @@ if __name__ == "__main__":
|
||||||
make sure you set the price column on line number 21. Here we
|
make sure you set the price column on line number 21. Here we
|
||||||
use a dataset which have the price on 3rd column.
|
use a dataset which have the price on 3rd column.
|
||||||
"""
|
"""
|
||||||
df = pd.read_csv("sample_data.csv", header=None)
|
sample_data = pd.read_csv("sample_data.csv", header=None)
|
||||||
len_data = df.shape[:1][0]
|
len_data = sample_data.shape[:1][0]
|
||||||
# If you're using some other dataset input the target column
|
# If you're using some other dataset input the target column
|
||||||
actual_data = df.iloc[:, 1:2]
|
actual_data = sample_data.iloc[:, 1:2]
|
||||||
actual_data = actual_data.values.reshape(len_data, 1)
|
actual_data = actual_data.to_numpy().reshape(len_data, 1)
|
||||||
actual_data = MinMaxScaler().fit_transform(actual_data)
|
actual_data = MinMaxScaler().fit_transform(actual_data)
|
||||||
look_back = 10
|
look_back = 10
|
||||||
forward_days = 5
|
forward_days = 5
|
|
@ -18,9 +18,9 @@ This module and all its submodules are deprecated.
|
||||||
"""
|
"""
|
||||||
|
|
||||||
|
|
||||||
import collections
|
|
||||||
import gzip
|
import gzip
|
||||||
import os
|
import os
|
||||||
|
import typing
|
||||||
import urllib
|
import urllib
|
||||||
|
|
||||||
import numpy
|
import numpy
|
||||||
|
@ -28,7 +28,12 @@ from tensorflow.python.framework import dtypes, random_seed
|
||||||
from tensorflow.python.platform import gfile
|
from tensorflow.python.platform import gfile
|
||||||
from tensorflow.python.util.deprecation import deprecated
|
from tensorflow.python.util.deprecation import deprecated
|
||||||
|
|
||||||
_Datasets = collections.namedtuple("_Datasets", ["train", "validation", "test"])
|
|
||||||
|
class _Datasets(typing.NamedTuple):
|
||||||
|
train: "_DataSet"
|
||||||
|
validation: "_DataSet"
|
||||||
|
test: "_DataSet"
|
||||||
|
|
||||||
|
|
||||||
# CVDF mirror of http://yann.lecun.com/exdb/mnist/
|
# CVDF mirror of http://yann.lecun.com/exdb/mnist/
|
||||||
DEFAULT_SOURCE_URL = "https://storage.googleapis.com/cvdf-datasets/mnist/"
|
DEFAULT_SOURCE_URL = "https://storage.googleapis.com/cvdf-datasets/mnist/"
|
|
@ -24,8 +24,9 @@ class DoubleLinkedListNode(Generic[T, U]):
|
||||||
self.prev: DoubleLinkedListNode[T, U] | None = None
|
self.prev: DoubleLinkedListNode[T, U] | None = None
|
||||||
|
|
||||||
def __repr__(self) -> str:
|
def __repr__(self) -> str:
|
||||||
return "Node: key: {}, val: {}, freq: {}, has next: {}, has prev: {}".format(
|
return (
|
||||||
self.key, self.val, self.freq, self.next is not None, self.prev is not None
|
f"Node: key: {self.key}, val: {self.val}, freq: {self.freq}, "
|
||||||
|
f"has next: {self.next is not None}, has prev: {self.prev is not None}"
|
||||||
)
|
)
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -17,7 +17,7 @@ rich
|
||||||
scikit-learn
|
scikit-learn
|
||||||
statsmodels
|
statsmodels
|
||||||
sympy
|
sympy
|
||||||
tensorflow ; python_version < '3.12'
|
tensorflow
|
||||||
tweepy
|
tweepy
|
||||||
# yulewalker # uncomment once audio_filters/equal_loudness_filter.py is fixed
|
# yulewalker # uncomment once audio_filters/equal_loudness_filter.py is fixed
|
||||||
typing_extensions
|
typing_extensions
|
||||||
|
|
Loading…
Reference in New Issue
Block a user